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Abstract

This paper proposes a simple test for compositionality (i.e.,
literal usage) of a word or phrase in a context-specific way.
The test is computationally simple, relying on no external re-
sources and only uses a set of trained word vectors. Exper-
iments show that the proposed method is competitive with
state of the art and displays high accuracy in context-specific
compositionality detection of a variety of natural language
phenomena (idiomaticity, sarcasm, metaphor) for different
datasets in multiple languages. The key insight is to connect
compositionality to a curious geometric property of word em-
beddings, which is of independent interest.

1 Introduction
Idiomatic expressions and figurative speech are key compo-
nents of the creative process that embodies natural language.
One expression type is multiword expressions (MWEs) –
phrases with semantic idiosyncrasies that cross word bound-
aries (Sag et al. 2002). Examples of MWEs include by and
large, spill the beans and part of speech. As such, these
phrases are idiomatic, in that their meanings cannot be in-
ferred from the meaning of their component words, and are
hence termed non-compositional phrases as opposed to be-
ing compositional phrases.

A particularly intriguing aspect of MWEs is their ability
to take on degrees of compositionality depending on the con-
text they are in. For example, consider two contexts in which
the phrase bad egg occurs.
(1) Ensure that one bad egg doesn’t spoil good businesses
for those that care for their clientele.
(2) I don’t know which hen is laying the bad egg but when
I crack it, it explodes! It is all creamy yellowish with very
little odor.
In (1), the phrase has a non-compositional interpretation to
mean ‘an unpleasant person’, whereas in (2), the phrase has
the meaning of a noun phrase whose head is egg and mod-
ifier is bad. This context-dependent degree of composition-
ality of an MWE poses significant challenges to natural lan-
guage processing applications. In machine translation, in-
stead of processing the MWE as a whole, a literal translation
of its components could result in a meaningless phrase in the
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target language, e.g., chemin de fer from French to English
to be way of iron in place of railway (Bouamor, Semmar,
and Zweigenbaum 2012). In information retrieval, the re-
trieved document matching a component word is irrelevant
given the meaning of the MWE hot dog. Hence, identifying
the compositionality of MWEs is an important subtask in a
computational system.

As another example, consider the word love in the fol-
lowing two contexts. In the first: “I love going to the dentist.
Been waiting for it all week!”, the word has a non-literal
(hence non-compositional) and sarcastic interpretation to
actually mean the exact opposite of the literal (composi-
tional) sense, which is to “like”. In the second: “I love straw-
berry ice cream; it’s simply my favorite”, the same word has
the compositional meaning. Again, the degree of composi-
tionality is crucially context-dependent.

Yet another example of compositionality involves
metaphors. Consider the word angel in the following two
contexts:
(1) The girl is an angel; she is helpful to the children.
(2) The angels are sure keeping busy, what with all his dis-
tractions and mishaps.
In (1) the word has a figurative sense (i.e., non-
compositional interpretation) whereas in (2), the word has
the compositional meaning of a “divine being”. Again, the
degree of compositionality is crucially context-dependent.

In this paper our focus is to decide the compositional-
ity of a word or a phrase using its local linguistic con-
text. Our approach only relies on the use of word embed-
dings, which capture the “meaning” of a word using a low-
dimensional vector. Our compositionality prediction algo-
rithm brings two key innovations: (1) It leverages the crucial
contextual information that dictates the compositionality of
a phrase or word; (2) The prediction mechanism is com-
pletely independent of external linguistic resources. Both
these are significant improvements over recent works with
similar goals: compositionality of MWEs (Salehi, Cook, and
Baldwin 2015), works on sarcasm (Wallace et al. 2014) and
metaphor detection (Tsvetkov et al. 2014) (the latter works
rely significantly on external linguistic resources and access
to labeled training data).

To the best of our knowledge, this is the first unsupervised
study on context-dependent phrase compositionality and the
first resource-independent study on sarcasm and metaphor
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identification. This work is centered around two primary
questions:
(1) How can the semantics of a long context be represented
by word embeddings?
(2) How can we decide the compositionality of a phrase
based on its embeddings and that of its context?

We answer these questions by connecting the notion of
compositionality to a geometric property of word embed-
dings. The key insight is that the context word vectors (suit-
ably compressed) reside roughly in a low dimensional linear
subspace and compositionality turns out to be related to the
projection of the word/phrase embeddings (suitably comp-
resed to a single vector) onto this context subspace.

The key justification for our approach comes from em-
pirical results that outperform state of the art methods on
many metrics, while being competitive on the others. We
use three standard datasets spanning two MWE construction
types (noun compounds and verb particle constructions) in
two languages (English and German) in addition to a dataset
in Chinese (heretofore unexplored language), and standard
datasets for detection of metaphor and sarcasm in addition to
a new dataset for sarcasm detection from Twitter. We sum-
marize our contributions below.
Compositional Geometry: We show that a word (or MWE)
and its context are geometrically related as jointly lying in
a linear subspace, when it appears in a compositional sense,
but not otherwise.
Compositionality decision: The only input to the algorithm
is a set of trained word vectors after the preprocessing step
of removing function words and the algorithm perform sim-
ple PCA (principal component analysis) operations.
Multi-lingual applicability: The algorithm is very general,
relies on no external resources and is agnostic to the specifics
of one language; we demonstrate strong test results across
different languages.

We begin next with a discussion of the geometry of com-
positionality leading directly to our context-based algorithm
for compositionality detection. The test is competitive with
or superior to state of the art in a variety of contexts and
languages and in various metrics.

2 Compositionality and the Geometry of
Word Embeddings

Our goal is to detect the compositionality level of a given
occurrence of a word/phrase within a sentence (the con-
text). Our main contribution is the discovery of a geomet-
ric property of vector embeddings of context words (exclud-
ing the function words) within a sentence: they roughly oc-
cupy a low dimensional linear subspace which can be em-
pirically extracted via a standard technique: principal com-
ponent analysis (PCA) (Shlens 2014).

We stack the d-dimension vectors v1, . . . , vn, correspond-
ing to n words in a sentence, to form a d×n matrix X . PCA
finds a d × m (m < n) matrix X ′ which maximizes the
data variance with reduced dimension. Here X ′ consists of
m new vectors, v′1, ..., v

′
m. Now the original data X is rep-

resented by fewer vectors of X ′, where vectors v and v′ are
d-dimensional (m is chosen such that a large enough frac-

Figure 1: Geometry of phrase and context.
The compositional context embeddings of cutting edge are
denoted by green points, and the non-compositional con-
text embeddings by red points. The embedding of phrase
cutting edge is denoted by the blue point. Note that the
phrase embedding is very close to the space of the com-
positional context while being farther from the space of its
non-compositional context.

tion – a hyperparameter – of the variance of X is captured
in X ′).

When the phrase of interest occurs in a compositional
sense, then the phrase’s compositional embedding is roughly
close to the subspace associated with the context embed-
dings (extracted using PCA from context words). Intuitively
this happens because compositionality is tantamount to in-
dividual words themselves being directly related (i.e., occur
together often enough) to (a majority of) the context words.

We illustrate this phenomenon via an example found in
Table 1. Consider the phrase “cutting edge”. When words
like sharp, side and tool appear in the context, “cutting edge”
tends to have its compositional meaning. Conversely, when
words like productions, technology and competitive are in
the context, “cutting edge” is more likely to be an idiom. We
project the embeddings of the phrase and the two contexts to
three-dimensions to visualize the geometric relationship, cf.
Figure 1.

It is immediate that the phrase embedding occupies the
same subspace as the context when it is used in the compo-
sitional sense, while it is far from the subspace of the context
when used in the non-compositional sense. The precise for-
mulation of the projection operations used in this illustration
is discussed next.

2.1 Compositional Semantic Representation
Suppose a sentence t consists of n content words
{w1, ..., wn} with respective vector embeddings
{v1, ..., vn}. Two possible representations of the “meaning”
of t are the following:
average vector representation: vt = v1 + ... + vn, adding
all component word vectors together, as in (Mitchell and
Lapata 2010) and several works on phrase2vec (Gershman
and Tenenbaum 2015) and sentence2vec (Faruqui et al.
2015).



PCA subspace representation: Denote the word vectors by
X = [v1, . . . , vn], and the PCA output X ′ = [v′1, ..., v

′
m],

where v′i are principal components extracted from X using
the PCA operation. Now the sentence t is represented by the
(span of columns of) matrix X ′ instead of a single vector
as in average vector representation. Choosing to represent
the sentence by multiple vectors is a key innovation of
this paper and is fairly critical to the empirical results we
demonstrate.

Note that the PCA operation returns a (d × m) matrix
X ′ and thus PCA is used to reduce the “number of word
vectors” instead of the embedding dimension. In our experi-
ments, d = 200, n ≈ 10− 20, and m ≈ 3. PCA extracts the
most important information conveyed in the sentence with
only m vectors. Further, we only take the linear span of the
m principal directions (column span of X ′), i.e., a subspace
as the representation of sentence t.

Let p be a single word (in the metaphor and sarcasm
settings) or a bigram phrase (in the MWE setting) that we
would like to test for compositional use. Suppose that p has
a single-vector representation vp, and context embedding
is represented by the subspace Sc spanned by the m vec-
tors (v′1, . . . , v

′
m). Our test involves projecting the phrase

embedding vp on the context subspace Sc. Denote the or-
thogonal projection vector by v′p, where v′p lies in Sc, and

v′p = argmax
v∈Rd

vT vp
‖v‖·‖vp‖ .

Compositionality Score is the cosine distance between vp
and v′p (the inner product between the vectors normalized
by their lengths); this measures the degree to which the
word/phrase meaning agrees with its context: the larger the
cosine similarity, the more the compositionality.

Based on the commonly-used distributional hypothesis:
word or phrase meaning can be inferred from its context
(Rubenstein and Goodenough 1965), we note that the lo-
cal context (neighboring words) is crucial in deciphering the
compositional sense of the word or phrase. This is in contrast
to prior works that use the global context (the whole docu-
ment or corpus) for semantic analysis, without accounting
for the context-dependence of polysemy (Reddy, McCarthy,
and Manandhar 2011).

At times, the word(s) being tested themselves exhibit pol-
ysemous behavior (example: check in blank check) (Mu,
Bhat, and Viswanath 2016). In such cases, it makes sense to
consider multiple embeddings for different word senses (we
use MSSG representations (Neelakantan et al. 2014)): each
word has a single global embedding and two sense embed-
dings. We propose to use global word embeddings to repre-
sent the context, and sense embeddings for phrases seman-
tics, allowing for multiple compositionality scores. We then
measure the relevance between a phrase and its context by
the maximum of the different compositionality scores.

Our compositionality detection algorithm uses only two
hyperparameters: variance ratio (used to decide the amount
of variance PCA should capture) and threshold (used to test
if the compositionality score is above or below this value).
Since compositionality testing is essentially a supervised
learning task: in order to provide one of two labels, we need
to tune these parameters based on a (gold) training set. We

see in the experiment sections that these parameters are ro-
bustly trained on small training sets and are fairly invariant
in their values across different datasets, languages and tasks
(variance ratio equal to about 0.6 generally achieves good
performance).

3 MWE Compositionality Detection
We evaluate our context-based compositionality detection
method empirically by considering 3 specific, but vastly
distinct, tasks: a) Predicting the compositionality of phrases
that can have either the idiomatic sense or the literal sense
depending on the context (the focus of this section), b)
Sarcasm detection at the level of a specific word and at the
level of a sentence, and c) Detecting whether a given phrase
has been used in its metaphoric sense or literal sense. The
latter two tasks are the focus of the next two sections. For
each of the tasks we use standard datasets used in state-of-
the-art studies, as well as those we specifically constructed
for the experiments. We include datasets in German and
Chinese in addition to those available in English to highlight
the multi-lingual and language-agnostic capabilities of our
algorithm.

The training corpus of embeddings in English, Chinese
and German are obtained from polyglot (Al-Rfou, Perozzi,
and Skiena 2013). Two types of word embeddings are used
in the experiments: one trained with CBOW of word2vec
(Mikolov et al. 2014), and the other using NP-MSSG of
MSSG (Neelakantan et al. 2014).

3.1 Experiment I: Phrase Compositionality
In this part, we evaluate the performance of our algorithm
in capturing the semantics of the context and predicting the
compositionality of phrases, which we cast as a binary clas-
sification task – to decide the phrase compositionality in
each context. With reference to the examples in Table 1,
the task is to predict that the phrase cutting edge is used
in its compositional sense in the first instance and a non-
compositional one in the second. We perform experiments
with different word embeddings (CBOW and MSSG), as
well as different composition approximations for both the
phrase and the context (average and PCA).

Bi-context Dataset: We construct 2 datasets 1 (one for
English and the other for Chinese) consisting of a list of
polysemous phrases and their respective contexts (compo-
sitional and non-compositional).
The English dataset contains 104 polysemous phrases which
are obtained from the idiom dictionary (TheFreeDictionary
2016), and the Chinese dataset consists of 64 phrases ob-
tained from (ChineseDictionary 2016). Their respective con-
texts are extracted from the corpus provided by polyglot or
electronic resources (GoogleBooks 2016). Native English
and native Chinese speakers annotated the phrase compo-
sitionality for each context.

Detection Results: The results of using both average and
PCA subspace representations are shown as accuracy values,

1available at: https://github.com/HongyuGong/Geometry-of-
Compositionality.git



Phrase Compositional Context Non-compositional Context

cutting edge the flat part of a tool or weapon that (usually) has a
cutting edge. Edge - a sharp side.

while creating successful film and TV productions,
a cutting edge artworks collection.

ground floor
Bedroom one with en-suite is on the ground floor
and has a TV. Furnished with king size bed, two
bedside chests of drawers with lamps.

Enter a business organization at the lowest level or
from the ground floor or to be in a project under-
taking from its inception

.

Table 1: Examples of English phrases, whose compositionality depends on the context.

English

(CBOW)

English

(MSSG)

Chinese

(CBOW)

Chinese

(MSSG)

avg phrase
avg context 80.3 82.7 78.1 50

pca phrase
avg context 59.1 70.2 50.7 50.7

avg phrase
pca context 82.7 84.6 80.5 75

pca phrase
pca context 85.6 86.1 81.3 88.3

Table 2: Accuracy values (%) for Experiment I: Composi-
tionality detection from contexts.

obtained by comparing the predicted labels with the gold la-
bels provided by human annotators, in Table 2.1. The aver-
age vector of all the words (shown to be a very robust sen-
tence representation (Ettinger, Elgohary, and Resnik 2016))
serves as our baseline.

We note that having a PCA approximation for both the
phrase and the context, and the use of MSSG embedding
yields the best accuracy for this task in both the English and
the Chinese datasets; this is an instance where the PCA sub-
space representation is superior to the average representa-
tion. We believe that improving beyond the fairly high ac-
curacy rates is likely to require substantially new ideas as
compared to those in this paper.

3.2 Experiment II: Lexical Idiomaticity
Unlike compositionality detection in Experiment I, here we
detect component-wise idiomaticity of a two-word phrase
in this experiment. For example, “spelling” is literal while
“bee” is idiomatic in the phrase “spelling bee”. Modifying
our method slightly, we take the cosine distance between
the embedding of the target word (the first or the second
word) and its projection to the space of its context as the
measurement of lexical idiomaticity. The smaller the cosine
distance, the more idiomatic the component word is. Here
we use three datasets available from prior studies for the
same task – ENC, EVPC and GNC – and compare our re-
sults with the state-of-art in idiomaticity detection.

Dataset: The English noun compounds dataset (ENC),
has 90 English noun compounds annotated on a continu-
ous [0, 5] scale for the phrase and component-wise composi-
tionality (Reddy, McCarthy, and Manandhar 2011); the En-
glish verb particle constructions (EVPC) contains 160 En-
glish verb-particle compounds, whose componentwise com-

positionality are annotated on a binary scale (Bannard 2006).
German noun compounds (GNC), which contains 246 Ger-
man noun compounds annotated on a continuous [1,7] scale
for phrase and component compositionality (Schulte im
Walde, Müller, and Roller 2013). In this paper, we cast com-
positionality prediction as a binary classification task. We
set the same threshold of 2.5 to ENC as in (Salehi, Cook,
and Baldwin 2014a), a threshold of 4 to GNC and use the
binary labels of EVPC. The components with score higher
than the threshold are regarded as literal, otherwise, they are
idiomatic.

Detection Results: Our subspace-based method (Sub-
Space) uses CBOW and MSSG embeddings, and we use
both average and PCA approximations as context embed-
dings. Their performance is shown in the row of “SubSpace
(CBOW)” and “SubSpace (MSSG)” respectively. We have
two baseline methods: (1) PMI: pointwise mutual informa-
tion. PMI = log P (w1w2)

P (w1)P (w2)
, where P (·) is the probabil-

ity of the unigram or bigram (Manning and Schütze 1999).
PMI statistically evaluates the cohesion between words.
Higher PMI indicates the phrase is more likely to be non-
compositional. (2) Average sentence embedding method:
while we use PCA, several recent works have shown av-
erage word vectors to be robust sentence embeddings (Et-
tinger, Elgohary, and Resnik 2016) and we measure compo-
sitionality by the cosine similarity between the target word
vector and the sentence vector. The corresponding perfor-
mance is reported in the rows of “Avg Cxt (CBOW)” and
“Avg Cxt (MSSG)”. We only report the best performance of
each method in Table 3.
We compare with the state-of-the-art of (Salehi, Cook,
and Baldwin 2014a), specifically their methods based on
word definitions, synonyms and idiom tags (denoted by
ALLDEFS+SYN, ITAG+SYN, ALLDEFS) provided by
wikitionary. As we can see from Table 2.1, our method com-
pares favorably to the state-of-art performance while out-
performing two baseline methods. The key advantage of
our method is our non-reliance on external resources like
wikitionary or multilingual translations which are heavily
relied upon in the state-of-the-art methods (Salehi, Cook,
and Baldwin 2014a; 2014b). Also, unlike the assumption in
(Salehi, Cook, and Baldwin 2015), we do not require that
the test phrases appear in the embedding training corpus.

4 Sarcasm Detection
Sarcasms, also called irony, are expressions whose actual
meaning is quite different - and often opposite to - their lit-
eral meaning – and are instances of non-compositional usage
(Davidov, Tsur, and Rappoport 2010; Riloff et al. 2013). For



First Component Second Component
Dataset Method Precision (%) Recall (%) F1 score (%) Precision (%) Recall (%) F1 score (%)

ENC
dataset

PMI 50 100 66.7 40.4 100 57.6
ITAG+SYN 64.5 90.9 75.5 61.8 94.4 74.7

Avg Cxt (MSSG) 68.5 79.5 73.7 61.2 83.3 70.6
SubSpace (CBOW) 78.4 90.9 84.2 67.44 80.6 73.44

EVPC
dataset

PMI 22.2 68.4 33.5 53.0 80.2 63.8
ALLDEFS 25.0 97.4 39.8 53.6 97.6 69.2

Avg Cxt (MSSG) 33.8 60.5 43.4 58.0 80.2 67.3
SubSpace (MSSG) 31.4 86.8 46.2 54.4 100 70.5

GNC
dataset

PMI 44.2 99.0 61.1 26.4 98.4 41.7
Avg Cxt (CBOW) 45.4 92.6 60.6 29.0 95.4 44.4
SubSpace (MSSG) 45.5 99.1 62.4 30.9 86.2 45.5

Table 3: Experiments on ENC, EVPC and GNC Datasets.

(a) word “good” (b) word “nice” (c) word “always”

Figure 2: Sarcasm Detection in Tweets

example, the word ‘nice’ is used in a sarcastic sense in ‘It’s
so nice that a cute video of saving an animal can quickly
turn the comments into politcal debates and racist attacks’.
The context clues identify sarcasm; in this example, ‘nice’
is inconsistent with its context words ‘debate’ and ‘attacks’.
These ideas are used in prior works to create elaborate fea-
tures (designed based on a large labeled training set) and
build a sarcasm detection system (Ghosh, Guo, and Mure-
san 2015). Instead, we evaluate our compositionality detec-
tion algorithm directly on this task.

Datasets: Tweets are ideal sources of sarcasm datasets.
We study words in tweets (a subset of the dataset in (Ghosh,
Guo, and Muresan 2015)) that are used both literally and
sarcastically (eg: love, like, always) and apply our simple
compositionality scoring algorithm. We choose six words
“good”, “love”, “yeah”, “glad”, “nice” and “always”, which
have enough occurrences in both literal and sarcastic senses
in our downloaded dataset. We apply our relevance scoring
algorithm, and count the occurrences in each score bin to
see whether our algorithm could distinguish sarcastic usage
from literal usage.

The histograms of the compositionality scores for words
“good”, “nice” and “always” (for sarcastic and literal us-
ages) are plotted in Fig. 2. We can visually see that the two
histograms (one for sarcastic usage and the other for literal
usage) can be distinguished from each other, for each of

word ‘good’ ‘love’ ‘yeah’ ‘nice’ ‘always’ ‘glad’
Accuracy 0.744 0.700 0.614 0.763 0.792 0.695
F1 score 0.610 0.64 0.655 0.623 0.605 0.582

Table 4: Twitter Sarcasm Detection

these three words. The histogram of sarcastic usage occu-
pies the low-score region peaking in the [0.3, 0.4) bin, while
the histogram of literal usage occupies the high-score region
with peak in the [0.4, 0.5) bin. This shows that our simple
resource-independent compositionality scoring method can
distinguish sarcasm and non-sarcasm.

To quantify this extent, we report the accuracy and F1
scores of a simple threshold classifier in each of the six in-
stances in Table 4. We emphasize that this performance is
derived for a very small dataset (for each of the words) and
is entirely achieved using only a trained set of word vectors
– this would be a baseline to build on for the more sophisti-
cated supervised learning systems.

A quantitative test is provided via our study on a Red-
dit irony dataset of 3020 annotated comments (Wallace et
al. 2014). An example of an ironic comment is “It’s amaz-
ing how Democrats view money. It has to come from some-
where you idiots and you signed up to foot the bill. Congrat-
ulations.” Details of our experiment on the Reddit dataset
is available in the full version (Gong, Bhat, and Viswanath



features accuracy f1 score

SVO
state-of-art 279 0.82 0.86
SubSpace

original sentence 4 0.729 0.744

SubSpace
longer sentence 4 0.809 0.806

AN
state-of-art 360 0.86 0.85
SubSpace

original sentence 3 0.735 0.744

SubSpace
longer sentence 3 0.80 0.798

Table 5: Metaphor Detection

2016) where our method with its much fewer features gets
comparable results to (and in some instances achieve up to a
5% higher F1 score over) the baseline system in (Wallace et
al. 2014).

5 Metaphor Detection
Metaphors are usually used to express the abstract sense of a
word in noncompositional contexts: in the sentence “Com-
prehensive solutions marry ideas favored by one party and
opposed by the other”, the intended meaning of “marry” is
“combine”, a significant (and figurative) generalization of its
literal meaning. As such, metaphors form a key part of non-
compositional semantics and are natural targets to study in
our generic framework.

Dataset: English datasets consisting of metaphoric and
literal uses of two syntactic structures – (subject-verb-object
(SVO) and adjective-noun (AN) compounds) – are provided
in (Tsvetkov et al. 2014). An example of an SVO metaphor
is “Actions talk even louder than phrases”, and an example
of an AN metaphor is “black humor seems very Irish to me”.
The SVO dataset contains 111 literal and 111 metaphorical
phrases while the AN dataset contains 100 literal and 100
metaphorical phrases.

Algorithm Description: The state-of-the-art work uses
training-data-driven feature engineering methods that rely
on external resources like WordNet and MRC psycholin-
guistic database (Tsvetkov et al. 2014). We depart by us-
ing scores generated by our compositionality detection algo-
rithm, albeit specific to POS tags (critical for this particular
dataset since it is focused on specific syntactic structures),
as features for metaphor detection.

For each word in the SVO or AN structure, we obtain a
compositionality score with respect to its local context and
derive features from these scores: The features we derive
for SVO dataset from these scores are: (1) the lowest score
in SVO; (2) verb score; (3) ratio between lowest score and
highest score; (4) min ( verb score

subj score ,
subj score
verb score ,

verb score
obj score ,

obj score
verb score ).

If an SVO phrase is a metaphor, then we expect there will
be at least one word which is inconsistent with the context.
Thus we include the lowest score as one of the features.
Also, the verb score is a feature since verbs are frequently
used metaphorically in a phrase. The absolute score is very
sensitive to the context, and we also include relative scores
to make the features more robust. The relative scores are the

ratio between the lowest score and the highest score, and the
minimum ratio between verb and subject or object.

The features we get for AN dataset from these scores are:
(1) the lowest score in AN; (2) the highest score; (3) ratio
between the lowest and the highest score. These features are
then fed into a supervised learning system (random forest),
analogous to the one in (Tsvetkov et al. 2014) allowing for a
fair comparison of the power of the features extracted.

Detection Results: The experiment results on SVO and
AN datasets are detailed in Table 5 where the baseline is
provided by the results of (Tsvetkov et al. 2014) (which has
access to the MRC psycholinguistic database and the super-
sense corpus). On the full set of original sentences, the per-
formance of our compositionality detection algorithm (with
only four features in stark contrast to the more than 100 used
in the state of the art) is not too far from the baseline.

Upon a closer look, we find that some of the original sen-
tences are too short, e.g. “The bus eventually arrived”. Our
context-based method naturally does better with longer sen-
tences and we purified the dataset by replacing sentences
whose content words are fewer than 7 with longer sentences
extracted from Google Books. We rerun our experiments
and the performance on the longer sentences is improved,
although it is still a bit below the baseline – again, contrast
the very large number of features (extracted using significant
external resources) used in the baseline to just 3 or 4 of our
approach (extracted in a resource-independent fashion).

6 Related Work

Predicting the compositionality of MWEs is a well recog-
nized challenge with significant recent attention; the pro-
posed approaches can be broadly divided into four cat-
egories: using lexical and syntactic properties of MWEs
(Pecina and Schlesinger 2006; Cook, Fazly, and Steven-
son 2007), distributional hypothesis-based methods (Katz
and Giesbrecht 2006), external resource-based methods
(Salehi and Cook 2013; Salehi, Cook, and Baldwin 2014b),
and word embeddings-based approaches (Salehi, Cook, and
Baldwin 2015).

Detection of sarcasm and metaphor is of great impor-
tance in language processing applications like text analy-
sis, dialogue systems and sentiment analysis. Recent works
have used extensive linguistic resources for sarcasm detec-
tion (Ghosh, Guo, and Muresan 2015) and metaphor iden-
tification (Tsvetkov et al. 2014). Bringing MWEs, sarcasms
and metaphors under a common umbrella of compositional-
ity, followed by a unified framework to study it, is our cen-
tral contribution. Given that our work is at the intersection
of a vast body of topical literature, we have provided a more
elaborate discussion of the previous works in this area and
comparisons to our work in the full version (Gong, Bhat, and
Viswanath 2016).
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