
Heterogeneous Computing Meets Near-Memory Acceleration and 

High-Level Synthesis in the Post-Moore Era 

Nam Sung Kim1, Deming Chen1, Jinjun Xiong2, and Wen-mei Hwu1 

1University of Illinois, Urbana-Champaign, IL, USA 

2IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA 

{nskim, dchen, w-hwu}@illinois.edu; jinjun@us.ibm.com 

Abstract 

As the trends driven by Moore’s Law come to an end, increased heterogeneity at all levels of computing is required 

to deliver computing performance needed for emerging applications, leading to the proliferation of various 

application- or domain-specific accelerators. This in turn demands more memory bandwidth, as heterogeneous 

computing with accelerators consumes data at a much higher rate than traditional homogeneous computing, limiting 

the computing performance. To tackle this challenge, this article presents a conceptual near-memory acceleration 

architecture; demonstrates its practicality and plausibility using a recent experimental platform from IBM, as well as 

its potential impact on performance and energy efficiency; and discusses the need for adopting a high-level synthesis 

approach for such a near-memory acceleration architecture. Subsequently, this article concludes with future research 

directions for broad adoption of near-memory acceleration. 

Keywords: heterogeneous computing, near-DRAM acceleration, DRAM, FPGA, high-level synthesis, compiler 

technology. 

1. Introduction 

Advances in computing have significantly relied on Moore’s Law that kept the promise of providing improved 

performance, energy efficiency, and cost objectives with the ever-increasing density of transistors. Thanks to 

Moore’s Law, the traditional computing system designs primarily depended on homogeneous computing resources 

(or general-purpose processors) to manage the complexity and manufacturing cost and to facilitate programming 

productivity and portability. Homogeneous computing in the post-Moore era will, however, not be able to deliver 

the performance demanded by emerging applications because of their inherent inefficiency (i.e., executing diverse 

applications with different characteristics using homogeneous general-purpose processors) and stringent power and 

thermal constraints imposed by the fabrication technologies. 

Faced with such a challenge, heterogeneous computing with accelerators such as GPU (Graphics Processing Unit), 

FPGA (Field Programmable Gate Array), and ASIC (Application-Specific Integrated Circuits), optimized for a 

domain of applications or a specific application has emerged and proliferated to deliver desired performance for 

current and future computing, and it has proven to be very effective in dramatically improving performance of 

diverse applications through many academic studies and industry demonstrations. This in turn demands more 

memory bandwidth than traditional homogeneous computing, because such accelerators consume data at a much 

higher rate proportional to their increased processing capability. However, the memory bandwidth based on the 

traditional processor-memory interface technology will practically stop scaling in the foreseeable future of the post-

Moore era, thus limiting the performance of heterogeneous computing with accelerators. 

To further improve computing performance under the memory bandwidth constraint, researchers have proposed 

various near-memory acceleration architectures, exploiting emerging integration technologies to provide more 

bandwidth for accelerators near memory. However, the high cost and some limitations of such integration 

technologies can prevent broad adoption of near-memory acceleration architectures especially for low-cost 

commodity computing systems. 

 



 

This article first presents a conceptual near-memory acceleration architecture, as well as its potential for improving 

performance and energy efficiency. The primary benefit of the proposed near-memory acceleration architecture is 

that it is less expensive and more practical than other near-memory acceleration architectures relying on the 

emerging integration technologies, because it can be built with commodity memory devices and modules. Second, 

this article demonstrates the practicality and plausibility of the presented architecture using a recent experimental 

platform that is designed to allow the proprietary memory interface of IBM POWER8 systems to support various 

commodity and specialized memory modules such as DDR DIMMs and NVDIMMs. Third, the article argues for the 

need for adopting a high-level synthesis (HLS) approach to exploit such a platform, as well as demonstrates the 

performance and energy efficiency improvement obtained by using the HLS approach. Lastly, this article concludes 

by identifying future research directions to broaden the adoption of such an architecture for more diverse 

applications especially by reducing the complexity and effort associated with identifying application code segments 

and mapping them to accelerators. 

2. Background 

Near-DRAM Acceleration 

Among the various memory technologies, DRAM maintains the best balance in capacity, bandwidth, and cost and 

thus remains as the most dominant and competitive technology for the main memory of general-purpose processors 

and accelerators. Meanwhile, high-valued applications increasingly demand higher DRAM bandwidth when they 

run on heterogeneous computing systems because accelerators consume data much faster than conventional 

processors. However, the bandwidth of the conventional DRAM technology has not significantly increased due to 

various technological constraints and super-linear cost increase in order to overcome these constraints. Furthermore, 

the capacitance of on- and off-chip interconnects has scaled at a much slower rate than that of logic with technology 

scaling. This significantly increases the fraction of data transfer energy in the total system energy, and thus 

fundamentally limits the energy efficiency obtained by accelerators. These aspects have motivated researchers to 

leverage emerging DRAM modules such as HMC (Hybrid Memory Cube) and HBM (High-Bandwidth Memory) 

that facilitate tight 3D-integration of DRAM with accelerators and explore various near-DRAM acceleration (NDA) 

architectures to reap the performance and energy-efficiency benefits of both accelerators and processing near 

DRAM (e.g., [1]). 

High-Level Synthesis (HLS)  

HLS can transform application code based on high-level languages 

such as C and C++ to RTL (Register Transfer-Level) code 

automatically. Part of the HLS flow also optimizes the generation 

of loop and tiling structures, function interfaces, pipelining and in-

lining, and various resource instantiations. Figure 1 illustrates some 

typical steps for HLS. In general, HLS provides effective design 

complexity management. For example, the code base for HLS 

designs is 5-10× smaller than that for equivalent RTL designs, and 

HLS simulations can be up to 1000× faster than equivalent RTL 

simulations [2]. Thus, HLS is able to explore a large design space 

efficiently and enables fast iteration on complex designs. 

C is the traditional input language for HLS. Other high-level 

language programs can be translated into C for input to HLS. The 

FCUDA framework is such an example, where CUDA code is first 

transformed into C code through source-to-source transformations 

[3] before given to an HLS tool. Today, any language that can be 

compiled to a Control Data Flow Graph (CDFG), e.g., C++, 

OpenCL, MATLAB, can be translated to a hardware description 

through HLS. A key enabler of this language flexibility is advances 
Figure 1: Typical HLS flow. 



in common software intermediate representations such as LLVM-IR [4]. 

Previous HLS solutions have limitations, and studies have shown that the design quality of HLS could be inferior to 

that of a manual RTL design. New techniques developed recently have, however, led to drastically improved HLS 

solutions [5], which improved not only the traditional design metrics such as circuit performance and energy 

efficiency but also emerging metrics such as circuit reliability, robustness and security. 

3. Near-DRAM Acceleration Architecture 

This section presents an NDA architecture that can be built with standard DRAM DIMMs (Dual-Inline Memory 

Modules) [6]. Subsequently, it describes a recent experimental buffered DRAM module dubbed ConTutto from IBM 

[7], and shows that ConTutto can serve as a platform for NDA architectures built with standard DRAM DIMMs. 

The presented NDA architecture may benefit a narrower range of applications and/or provide lower improvement in 

performance and energy efficiency than NDA architecture based on 3D and 2.5D integration of DRAM with 

accelerators. Nonetheless, the presented NDA architecture can serve as an intermediate, low-cost solution for a wide 

adoption of NDA architecture in the future by bridging the significant cost and capacity gap between standard 

DRAM DIMMs for traditional computing systems and emerging DRAM modules such as HMC and HBM for 

emerging computing systems. 

Accelerators in Memory Buffers 

In pursuit of practical and inexpensive NDA architecture, we exploit some unique aspects of standard DDR4 

LRDIMM (Load-Reduced DIMM) architecture. That is, a DDR4 LRDIMM is composed of (1) a repeater device, 

called RCD (Registering Clock Driver), for command/address (C/A) signals from a memory controller to all of its 

DRAM devices, and (2) DB (Data Buffer) devices for data signals, one per group of vertically aligned standard 

DDR4 DRAM chips. LRDIMMs are commonly used to provide up to 8× more main memory capacity than 

UDIMMs1 (Unbuffered DIMMs) without sacrificing the maximum bandwidth of commodity DDR4 devices.  

Especially, it is recognized that DB devices can be an attractive substrate to integrate accelerators near DRAM [6]. 

Figure 2(a) depicts how an accelerator can be integrated into the traditional buffering circuitry of a DB device, 

where a pair of (de)multiplexers in a DB device can provide a path between an accelerator (or buffering circuitry) 

and a DRAM in NDA (or normal) mode. Figure 2(a) also illustrates how the limitations of DB device as a substrate 

for integrating an accelerator can be overcome. That is, the DQ2 I/O circuitry of commodity DRAM devices needs to 

be slightly modified such that bidirectional DQ pins not only transfer data between a DB device and its coupled 

DRAM devices but also dispatch C/A pairs from the DB device to the coupled DRAM devices in NDA mode. This 

small change can be easily accommodated since it does not require us to change either the existing DQ pins anord 

their layout of packages or DRAM bank architectures3.  

This NDA architecture can improve performance and energy efficiency of memory-intensive applications with 

limited temporal locality of data but simple operations repetitively applied in parallel to different data. To 

demonstrate the improvement in performance and energy efficiency, we take a set of benchmarks from widely used 

benchmark suites such as San Diego Vision, Parboil, CORAL, SPLASH-2 and Rodinia to evaluate the performance 

and energy consumption of the presented NDA architecture in Figure 2(b). These benchmarks exhibit high 

parallelism and they can distribute their input sets across accelerators to exploit concurrency and localize most of 

memory accesses. This in turn reduces inter-accelerator communications, providing high performance and energy 

efficiency. 

Figure 2(b) plots the simulated performance and energy consumption of a computer system with this NDA 

architecture, normalized to a computer system based on an Intel Haswell-like processor as a baseline. Although any 

programmable compute units such as SIMD (Single-Instruction Multiple-Data) engines, GPU cores and FPGA 

devices can be accelerators for this NDA architecture [6], a CGRA (Coarse-Grained Reconfigurable Accelerator) is 

                                                           
1 UDIMMs require a trade-off between capacity and bandwidth (e.g., 1600, 1866, and 2133MT/s for 3, 2, and 1 DIMMs per 

channel) due to signal integrity challenges. 
2 DQ denotes data in DRAM.  
3 Sharing DQ pins with C/A pins was implemented in DDR2 DRAM for Fully Buffered DIMM. 



chosen because it can provide lower control overhead and higher energy efficiency than SIMD engines and GPU 

cores, and better programmability than FPGA devices in this experiment. In the later part of this article, we will 

consider FPGA-based accelerators as well since the programmability challenge in using FPGA devices can be 

significantly mitigated by using the HLS approach.  

Performance evaluation is performed by gem5 integrated with an in-house CGRA simulator. To model the memory 

sub-system, we take DDR4-2400 with tRC of 45.32ns and tRCD of 13.32ns. To evaluate the energy consumption of 

processors and DDR4-2400 DRAM, we use McPAT and DRAMPower [8]. To model the timing, energy 

consumption and area of a CGRA with 64 functional units, we develop Verilog models that are synthesized with 

Synopsys DesignWare IPs, a TSMC 40nm standard cell library, and Synopsys Design Compiler to operate at 

800MHz. The synthesized CGRA consumes 0.832 mm2 with power density of 4 – 21mW/mm2, demonstrating that a 

CGRA can be integrated into a package for a DB device. The results show that this NDA architecture can offer 

9.89× higher performance and 83% less energy than the baseline. 

Note that this NDA architecture can simply replace conventional DB devices with accelerator-integrated DB devices 

on standard LRDIMMs to enable NDA. As such, it is significantly cheaper than NDA architecture relying on 3D or 

2.5D-stacking accelerators atop HBM/HMC-like memory at the moment4. 

Performance Scaling with More NDA-enabled Memory Modules 

As this NDA architecture is built with commodity DRAM devices and standard LRDIMMs, one critical question 

arises regarding how to provide sufficiently high DRAM bandwidth for the accelerators. To tackle this challenge, 

the following observations can be exploited. 

  

                                                           
4 This statement is based on conversations with major DRAM manufacturers. 

                          (a)                                                      (b)                                                                      (c)  

Figure 3: Bandwidth exposed to accelerators in (a) the host processor and (b) buffer devices. (b) Performance improvement 

with more NDA-enabled memory modules, relative to accelerators in the host processor (“ACCin CPU”). 

                                                       (a)                                                                                            (b)  

Figure 2: (a) Near-DRAM accelerator architecture where the accelerators are integrated within buffer devices. (b) Simulated 
performance and energy of near-DRAM accelerator illustrated in (a). BP, DISP, HACC, HS, KM, LBM, MGRIG, OCN, SIFT 
SRAD, and TRCK denote Back Propagation, DISParity map, Hardware ACCelerated cosmology code, HotSpot, K-Means, Lattice-
Bolzmann Method fluid dynamics, Magnetic Resonance Imaging Gridding, OCeaN movements, Scale-Invariant Feature Transform, 
Speckle Reducing Anisotropic Diffusion, and feature TRaCKing.  



Increasing the number of memory modules per channel (or controller) does not increase the bandwidth between the 

host processor (and accelerators in the processor) and the memory modules, because the channel is shared by all the 

memory modules in a traditional main-memory system illustrated in Figure 3(a). In the presented NDA architecture, 

however, accelerators in each memory module do not use the shared channel but the private channels between 

memory buffer devices and their coupled memory devices. Hence, the accelerators are isolated from the shared 

channel by the buffer devices in NDA mode [6,9]. Consequently, the aggregate bandwidth that can be utilized by the 

accelerators is multiplied by the number of NDA-enabled memory modules per channel as depicted in Figure 3(b). 

In other words, the bandwidth per accelerator remains constant in this NDA architecture, whereas it would have 

been divided by the number of accelerators in a traditional architecture that integrates the accelerators within the 

host processor itself (denoted by “ACCinCPU” in this article). 

Industry Proprietary, Experimental Buffered Memory Module as an NDA Platform  
Figure 4(a) depicts a ConTutto prototype, a recently announced buffered DRAM module from IBM [7]. It is 

designed to be plugged into a memory slot of an IBM POWER8 system and allows an IBM POWER8 system to use 

commodity DDR DIMMs or NVDIMMs instead of DRAM modules based on DMI (Differential Memory Interface), 

an IBM proprietary memory interface. Specifically, two primary components of a ConTutto board are (1) DDR 

DRAM DIMMs (or NVDIMMs) and (2) an FPGA device implementing DDR and DMI interfaces with IP blocks 

such as PHY and DDR memory controllers provided by the FPGA device and some custom logic designed by IBM 

as illustrated in Figure 4(b). The FPGA device in a ConTutto board is a high-end Stratix V, and a large fraction of 

(programmable) resources is unused after implementing the primary function as a buffered memory interface 

between DMI and DDR. Exploiting the unused FPGA resources, we can implement accelerators in the FPGA 

device. That is, a ConTutto board can be programmed into a platform for NDA architectures similar to the presented 

NDA architecture in this section, demonstrating the practicality and plausibility of the presented NDA architecture. 

Lastly, as multiple ConTutto boards can be plugged into the memory slots of an IBM POWER8 system and each 

ConTutto board provides two DDR DRAM channels (i.e., doubling the DRAM bandwidth per channel), we can also 

scale the aggregate DRAM bandwidth exposed to the accelerators in ConTutto boards, as described earlier in this 

section. 

4. A High-Level Synthesis Approach for FPGA-based NDA Platforms 

The FPGA device in an NDA platform as illustrated in the previous section can serve as a programmable accelerator 

for diverse applications. It has been reported that FPGA-based acceleration can provide orders of magnitude of 

improvement in performance and energy efficiency when compared with execution based on general-purpose 

processors. Nonetheless, it is non-trivial to utilize FPGA as an accelerator, because application code segments, 

which need to be accelerated in FPGA, must be designed in hardware (i.e., synthesizable HDL code at the RTL). In 

contrast, traditional programmable general-purpose accelerators such as CGRA or GPU do not impose such a 

(a)                                                                                                        (b) 
Figure 4: (a) IBM ConTutto prototype designed to be plugged into a main-memory slot of a IBM POWER8 system; “DMI” is 
the IBM proprietary memory interface equivalent to DDR used for x86-based systems. (b) Hardware components mapped onto 

the FPGA device of an IBM ConTutto board. 



burden as they execute the application code segments in software albeit transformed. Faced with such a challenge 

especially in FPGA-based NDA, we propose to leverage recent advances in HLS to program the FPGA device. 

Moreover, adopting HLS for NDA will allow us to rapidly (re)program the FPGA-based NDA in datacenter (cloud) 

server environments where we need to satisfy demands for accelerating various applications from many users.  

Recent rapid advances in machine-learning algorithms such as DNN (deep neural network) have enabled countless 

emerging recognition applications that are particularly suitable for cloud deployment. Since such machine-learning 

algorithms are memory-intensive, the performance of running them on traditional general-purpose processors with 

their memory systems is often limited by the available main-memory bandwidth [10]. Therefore, such applications 

are excellent candidates for NDA. In this section, we take an HLS approach to efficiently implement a convolutional 

neural network (CNN)5 on the FPGA device. More specifically, we first restructure the original CNN C++ source 

code to make it synthesizable, meaning that it does not contain code that cannot be translated into customized 

hardware. We then apply various techniques such as data sharing, data-flow optimization, batch processing, layer 

merging and combination, and task-level pipelining together with the right set of compiler pragmas to guide the 

compilation of Xilinx Vivado HLS. Then, we generate the corresponding RTL code, and map it onto a Xilinx FPGA 

device with two DDR3 DRAM channels (Xilinx ZYNQ-7000 SOC ZC706). To demonstrate the potential impact of 

this HLS approach on performance, power, and energy improvements for FPGA-based NDA, we also run the 

original CNN code in C++ on a computer with an Intel Xeon E3-1240 processor operating at the maximum 

frequency of 3.4GHz and 24GB RAM as a baseline. We estimate the power consumption of accelerators 

implemented in the FPGA device using power simulation tools from the Xilinx design suite and measure that of a 

computer based on the Intel processor using a power meter. Our experiment shows that the FPGA-based 

acceleration of CNN provides 268× improvement in performance while consuming only 10% power with negligible 

energy compared with the baseline. 

 Intel Xeon FPGA with HLS FPGA/Xeon 

Performance 0.525 GOPs 140.6 GOPs 268×  

Power 95W 9.6W 10.1% 

Energy 1168.5J 0.44J 0.038% 

Table 1: Performance, power and energy of FPGA-based acceleration using HLS compared to an Intel Xeon-based system. 

5. Future Directions to Improve Performance and Programming Portability of NDA  

Performance Portability 

In accelerating diverse applications with a NDA platform, even adopting an HLS approach requires a substantial 

level of programmer’s effort to identify and optimize application code segments to be accelerated before the 

synthesizable RTL code is mapped to an FPGA device. Albeit demanding less effort than FPGA-based acceleration, 

CGRA- or GPU-based acceleration must go through similar steps by matching the application code segments to the 

parallelism and memory architecture of the accelerator. Otherwise, high performance improvement cannot be 

accomplished regardless of the type of accelerators deployed especially for NDA. This challenge demands NDA to 

adopt a practical program synthesis system such as Tangram [11], which takes architecture-neutral program 

expression and automatically performs accelerator and memory architecture-specific optimization/tuning for 

performance, and adapt it for NDA with some enhancements. Specifically, we envision that a new compiler flow 

that can map Tangram code fragments to FPGA can naturally support NDA targeting IBM POWER8 system with 

ConTutto boards.  

Programming Portability 

                                                           
5 A CNN design typically consists of a number of convolution layer groups and some fully-connected layers. Each convolution 

layer group often contains one convolution layer, one rectified linear unit (ReLU) layer and one max-pooling layer. These groups 

are instantiated as computation modules. Apart from computation module, the CNN design also contains memory module, which 

stores the weight and input data. 



The use of traditional accelerators connected with system interconnects such as PCIe (and memory channels for 

NDA) often requires invasive changes in existing application source codes, because APIs specific to an accelerator 

architecture need to be incorporated into the original application codes to orchestrate coherent communications 

between the host processor and accelerators. This can be a considerable barrier to adoption because NDA is yet 

another acceleration architecture that will require some unique APIs considering those distinctive aspects of NDA. 

Such APIs and their usage will be different from those for traditional accelerators connected to PCIe, hence 

requiring a fresh learning curve for programmers, hurting productivity and thus adoptability of NDA. To this end, 

we expect that emerging interface technologies such as OpenCAPI (Open Coherent Accelerator-Processor Interface) 

[12] will replace the traditional interface technologies such as DDR and PCIe and be used as a unified interface 

technology for both accelerators and memories. With such interface technologies, it only requires one time effort to 

be proficient at using common/unified APIs for such interface technology, and it will then allow programmers to 

exploit the performance improvement by any future accelerator architecture including NDA architecture. 

6. Conclusions 

Faced with various challenges to improve performance and energy-efficiency of computing systems in the post-

Moore era, this article presented a conceptual near-DRAM acceleration (NDA) architecture, a heterogeneous 

computing architecture to further improve the acceleration performance that is currently limited by the available 

memory bandwidth between accelerators and memory. This article demonstrated ~10× and ~5× improvement in 

performance and energy efficiency, respectively, when compared with a conventional computer system based on a 

high-performance general-purpose processor. Furthermore, this article demonstrated the practicality and plausibility 

of the NDA architecture with a recent experimental IBM platform, as well as 268× improvement in performance 

using a fast and convenient HLS approach for FPGA-based acceleration. Lastly, this article discussed future 

directions to improve performance and programming portability of NDA with an emerging program synthesis 

system and accelerator-processor interface technology.  
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