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Computational Creativity
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Computational Creativity Community

– Artificial Intelligence

– Cognitive Science/ Psychology

– Design

– Arts

– OR/DA? …

Computational Creativity: Goals

• Support human creativity

• Enhance human creativity

• Build artifacts perceived as creative by humans 

Computational Creativity
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AARON (the robot painter)

• Developed by Harold Cohen since the 1970s

"AARON can make paintings of anything it 
knows about, but it actually knows about very 
little -- people, potted plants and trees, simple 
objects like boxes and tables, decoration.” 

-- Harold Cohen

An Example Application
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Preference Modeling 
Perspective
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Subjectivity in Evaluation

Relationship b/w creator/creation 

and observer (Wiggins 2006)

Creative artifact must be judged 

or deemed to be creative 

(Sawyer 2012)

Creativity assessment research 

goes back a far ways (Cattell et 

al. 1918)

“Novelty & More”

Creativity involves novelty and 

value (Newell et al. 1958, Boden 

1990)

Mayer (1999) reviews other 

terms: 

➢ Novelty: originality

➢ Value: usefulness, utility, adaptiveness, 

appropriateness, significance

We will use the terms: 

novelty & quality (Ritchie 2001, 

Pease et al. 2001)
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Motivation
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Brief Terminology Review
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• An objective indicates the direction in which one strives to do better and attributes

are measures that determine how well objectives have been met.

• Preference functions are mathematical representations of a person’s preferences 

over the domain of attributes (Keeney and Raiffa 1976).

 Value functions represent preferences under certainty

 Utility functions represent preferences under uncertainty

• Additive value functions are most pervasive.

 Weighted sum of marginal value functions:

 Mutual preferential independence is assumed

 Marginal value functions can take any form, 

such as the power function
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An Example Objectives Hierarchy
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• Example of an objectives hierarchy using attributes from Jordanous (2012) based 

on the 4 Ps model (Rhodes 1961):

Generation 

of results

Originality

Value/ 

usefulness

Involvement 

& persistence

Dealing with 

uncertainty 

Independence 

& freedom

Intention & 

emotion

Progression & 

development

Spontaneity

Thinking & 

evaluation

Variety & 

divergence

Domain 

competence

General 

intellect

interaction/ 

communication

Builds creative 
products

Undergoes creative 
processes

Has relevant knowledge 
& abilities

Interacts effectively 
with the environment

Computational creativity system
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Implications of Mutual Preferential Independence 
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Example (Sternberg et al. 2006)

• Students provide captions for cartoons from the New Yorker

• Judges evaluate cleverness, humor & originality (5 point scale)

• Total score is the sum

Q: Is the additive function appropriate?
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Value Copulas
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An Example Copula: Extended Archimedean

Copulas combine one-dimensional functions (Sklar 1959). They were introduced for joint 

probabilities but recently they have also been used for multi-attribute utilities (Abbas 2009). 
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Additive Value Functions vs. Value Copulas
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Consider the following value functions for an artifact with two attributes:

novelty xN & quality xQ
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A CC Recommender Scenario: Setup
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CC system generates N artifacts

Suppose the system considers “mean rating” (mean of novelty and quality scores) but the 

user’s preferences are best represented by v(.)

Question: What is the impact of mischaracterization of the user’s preferences?
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Metric : Rank distance

Case 1: System recommends the “best” 

artifact to the user

Case 2: System recommends a rank order of 

artifacts to the user
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A CC Recommender Scenario: Numerical Example (1/2)
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a) Metric: Exp. % value loss

Case 1: System recommends the “best” artifact to the user

CC system generates N artifacts
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A CC Recommender Scenario: Numerical Example (2/2)
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Case 2: System recommends a rank order of artifacts to the user

CC system generates N artifacts

1 2 3 4 5
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Suppose  artifacts are generated by: , 0,1  i i

N QN X X U i

   Suppose user's value function: , 1N Q N Qv x x x x    

b) Metric: Exp. rank distance
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Other Formulations (in the Paper*): Summary
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Computational Creativity Systems

Objectives are context-dependent in 

general

 Illustration comparing three jazz 

improvisation systems (Jordanous

2012); four-attribute formulation:

Sets of Artifacts

Set of artifacts with typicality T, 

quality Q (Ritchie 2001) generated by 

probability density function 

 Three-attribute formulation for the set:

➢Novelty: 

➢Conformance:

➢Quality:

 For copula-based preferences, a 

generating system that balances 

typicality and quality is optimal

 , ,T Qf t q
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  Attribute GAmprovising GenJam Voyager

“Product” 0.41 0.73 0.48

“Process” 0.34 0.70 0.38

“Person” 0.36 0.72 0.45

“Press” 0.40 0.55 0.57

* Bhattacharjya, D., 2016, Preference models for creative artifacts and systems, 

In Proceedings of the 7th International Conference on Computational Creativity (ICCC).



IBM Research

© 2010 IBM Corporation© 2016 IBM Corporation

Conclusions
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• An explicit study of attributes (and preference functions) is 

recommended for understanding preferences for artifacts and systems.

• Functions with dependence (like copulas) may be more appropriate 

than additive functions in creativity-related assessments .

• Formulating better preference models could have operational benefits

(e.g., better search and optimization methods) as well as strategic

ones (e.g., more effective design of computational creativity systems).

• There are limitations to using preference models here  – it can be 

hard!
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