
Towards Optimal Quantization of Neural Networks
Avhishek Chatterjee and Lav R. Varshney

University of Illinois at Urbana-Champaign

Abstract—Due to the unprecedented success of deep neural
networks in inference tasks like speech and image recognition,
there has been increasing interest in using them in mobile and
in-sensor applications. As most current deep neural networks are
very large in size, a major challenge lies in storing the network
in devices with limited memory. Consequently there is growing
interest in compressing deep networks by quantizing synaptic
weights, but most prior work is heuristic and lacking theoretical
foundations. Here we develop an approach to quantizing deep
networks using functional high-rate quantization theory. Under
certain technical conditions, this approach leads to an optimal
quantizer that is computed using the celebrated backpropagation
algorithm. In all other cases, a heuristic quantizer with certain
regularization guarantees can be computed.

Index Terms—deep neural network; quantization theory

I. INTRODUCTION

Deep neural networks have revolutionized speech process-
ing, image recognition, and many other inference tasks such
as regression where the natural performance criterion is mean
squared error (MSE). Current deep networks are enormous
cloud-based structures that cannot fit on devices at network
edge. This prevents real-time inference for internet of things
(IoT) applications due to latency in going back and forth with
the cloud, limiting their use in addressing information over-
load. Hence, hardware implementations of neural networks
for mobile, in-sensor, and in-memory inference have drawn
significant attention [1]–[4], e.g. in designing special-purpose
chips [5]–[7]. As these computing units have limited com-
putational and storage capacity, finding compact but accurate
representation of deep networks is now a necessity.

Compact representation of deep networks has attracted
recent interest [8]–[10]; an accurate representation of a deep
network must encode both the connectivity pattern of synapses
and the weights of those synapses. It is clear that the best
compact representation should jointly compress the graph
structure and the edge weights, but this is extremely challeng-
ing and further may yield representations that cannot directly
be used for inference without decoding. Here we focus on
fixed-rate scalar quantization of edge weights that can be used
directly for inferential computation and discuss compression
of network structure elsewhere [11].

Quantization of edge weights has been explored, either in
training neural networks with quantized weights [8], [12],
[13] or in quantizing the learned weights after training [9],

This work was supported in part by Systems on Nanoscale Information
fabriCs (SONIC), one of the six SRC STARnet Centers, sponsored by
MARCO and DARPA and in part by the IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR), a research collaboration as part of the
IBM Cognitive Horizons Network.

[14]. Techniques include optimal uniform fixed-point quanti-
zation [14], hashing-based quantization [9], and quantization
heuristics based on information-theoretic principles, whether
through vector quantization [10] or Huffman coding [15]. A
formal treatment of neural network quantization, which also
recognizes representing weights for their own sake is not the
same as for inference purposes, is lacking.

Here we develop a technique to optimally quantize learned
weights for approximating real-valued functions by deep
feedforward neural networks based on high-rate quantization
theory [16]. Neural networks can be viewed as functions
(possibly not known explicitly) of edge weights parametrized
by input variables which are random. This motivates us to
take an approach similar to functional quantization for parallel
trees [17] or sequences [18]. Some key differences from that
work include the facts: the functional form that the network
approximates may not be known; the network output is a
function of weights parametrized by random network inputs;
the weights are placed in a directed acyclic graph rather than
as inputs to a tree; and in realizing a particular function, the
weights of different edges are independent.

Before considering approximating a particular function, we
first consider approximating randomly chosen functions from
a class of functions by developing optimal quantizers through
connections to distributed functional quantization [17]. In
the main setting of a particular function, unlike variates
in distributed functional quantization, edge weights are not
independent and the impact of quantization errors on the
network output are modulated by the random inputs to the
network. To address this new mathematical challenge, we start
from first principles to derive an optimal quantizer. Under
some technical conditions, optimality is not possible but the
theoretical approach nevertheless yields a heuristic design that
is provably close to optimal quantizers in relative entropy.

Some simulation evaluations compare our approach with
naı̈ve quantization, but detailed implementation on real-world
networks is left for future work beyond this short paper.

II. WEIGHT QUANTIZATION FOR A CLASS OF FUNCTIONS

Although two-layer neural networks with a continuous
neuron activation function can approximate any continuous
function by varying the number of neurons, the connectivity
pattern between the two layers, and the edge weights [19],
L-layer neural networks with a given connectivity pattern
between consecutive layers can also realize a broad class of
functions by varying just the edge weights.

Indeed in many modern applications, edge weights are
trained within a given neural network structure to learn a

Fig. 1. A deep neural network.

function from a class of possible functions and these learned
weights are stored for future computation. In such scenarios
like regression, an important performance criterion for edge
weight quantization is to have small MSE over the class of
functions from the application domain.

As dictated by the application, consider the class of func-
tions of interest C with n ∈ Z+ inputs and a probability mea-
sure µ on the class. Let the input variables X1, X2, . . . , Xn

be distributed independently in [0, 1] and the functions in C be
realizable by bounded edge weights. With this property, one
can emulate a large class of distributions over C by choosing
appropriate edge weight distributions, so we proceed in terms
of these edge weight distributions rather than µ. As in Fig. 1,
let the edges between layer ` and `+ 1 be E` and the density
function of weight we` for edge e` ∈ E` be pe` on [0, 1].

Consider quantizing weights of different edges with possibly
different quantizers. Let a choice of weights {we`} realize
function f ∈ C. For inputs xn = (x1, x2, . . . , xn) the output
of the neural network is Φ(xn, {we`}), which equals f(xn).
Under quantizers {Qe`} for edges {e`}, the output of the
neural network is Φ(xn, {Qe`(we`)}). We aim to choose
{Qe`} to minimize MSE over the function class and all inputs:

E{w
e`
}EXn (Φ(xn, {we`})− Φ(xn, {Qe`(we`)}))

2
.

Given the number of quantization points K for edge
weights, the goal is to find partitions and representation points
in [0, 1]; we use techniques from high-rate quantization theory
for large K. At high rate, the problem of partitions and point
placement is posed as choosing an optimal quantizer point
density function λ : [0, 1] → R+,

∫
λ(w)dw = 1, where

λ(w)δw is the number of quantization points to be placed
around w ∈ [0, 1] and thus yields a companding quantizer
strategy, cf. [17].

The optimal point density function for each edge weight in
a neural network governed by {pe`} is as follows.

Proposition 1: The point density functions

λe` =
(ge` pe`)

1/3∫
(ge` pe`)

1/3
,

for ge`(we`) = EXnE{w
e`
}
[
(∂Φ(xn, {Qe`(we`)}/∂we`)2|we`

]
,

for edges {e`} minimize the MSE value
E{w

e`
}EXn (Φ(xn, {we`})− Φ(xn, {Qe`(we`)}))

2.
Proof: Follows by reusing techniques from [17, Thm. 13],

as Φ is a function of {we`}, parameterized by Xn.

An important concern is how to obtain ge`(we`) for a neural
network. Unlike functional quantization [17], this may not
have an explicit form, but we give efficient algorithms in
Sec. III. Another issue is that we may have different quantizers
for different edges. If, however, a neural network has regular
and symmetric connections with the same pe` for all edges,
{ge`} turns out to be the same for all edges. Hence, in
the commonplace practical setting of symmetric networks, a
single quantizer can optimally quantize all the edge weights.
Is it, however, sufficient to use a naı̈ve uniform quantizer
for symmetric networks? The following analytical examples
illustrate the importance of optimal non-uniform quantizers
even when the neural network is symmetric.

Example 1: Consider a simple three-layer neural network
with two input neurons, ten neurons in the hidden layer,
and one output neuron. Let the connections between the first
two layers and the last two layers both be complete bipartite
graphs. Let us fix all weights between the last two layers at
unity and consider the function class that can be realized by
varying weights between the first two layers. For the rectified
linear unit (ReLU) activation function at the neurons and
any arbitrary distribution of the input variables, we compare
optimal quantization to ordinary uniform quantization when
edge weights are distributed as p(w). The optimal quantizer
turns out to be (p(w))

1
3 /
∫

(p(w))
1
3 dw and the MSE for the

optimal quantizer is |E|E[X2]
24

(∫
(p(w))

1
3 dw

)3

, where E is the
set of edges.

Consider p(w) to be the Kumaraswamy distribution [20]
with both parameters 1, i.e., K(1, 1); the optimal quantizer is
uniform. For K(4, 1), uniform is not optimal and the ratio of
MSE between optimal quantizer and uniform quantizer is 1

2 ,
for K(7, 1) the ratio is 7

27 , and for K(10, 1) the ratio is 5
32 . As

i increases K(3i+ 1, 1) has increasing mass at higher values,
and in general, for K(3i + 1, 1) the ratio of MSE between
optimal and uniform quantizers is 3i+1

(i+1)3 which quickly goes
to zero.

Example 2: Now consider another three-layer example
with two input neurons, two hidden neurons, and one out-
put neuron, with quadratic activation function f(x) = x2.
Inputs and weights (w) are distributed independently as p(·)
on [0, 1]. We could analytically compute the optimal quan-
tizer and the optimal MSE to be (c0 + c1w + c2w

2 +
c3w

3)
1
3 (p(w))

1
3 /
∫

(c0 + c1w + c2w
2 + c3w

3)
1
3 (p(w))

1
3 dw

and 1
24

(∫
(c0 + c1w + c2w

2 + c3w
3)

1
3 (p(w))

1
3 dw

)3

, respec-
tively for c0 = m2

3m1 + m2
2m

2
1 + m1m2m3, c1 = 12m3

2 +
4m2

2m4 + 8m3
1m3 + 4m3

2 + 8m2
1m

2
2, c2 = 12m2

1m3, and
c3 = m4, where mk =

∫
wkp(w)dw for k ∈ Z+. For K(4, 1)

this ratio is 0.424.
These simple analytical examples for symmetric networks im-
ply that the gain of optimal quantizer over ordinary quantizer
increases rapidly as the weight distributions become more non-
uniform and skewed. Here Kumaraswamy distribution was
chosen for its analytical tractability and its ability to capture
a wide variety of shapes of density functions through the
variations of its parameters.

III. WEIGHT QUANTIZATION FOR A SPECIFIC FUNCTION

Optimal quantizers in Sec. II guarantee minimum error over
a class of functions. If a neural network is used for a specific
inference problem, we want the stronger guarantee that there is
small quantization error for a specific function corresponding
to the inference problem. After a neural network learns to
realize a specific function, weights on individual edges are
fixed and hence the approach in Sec. II that model edge
weights as coming from a distribution is not applicable. Also,
in practice one would like to have the same quantization
strategy for all edges to allow circuit implementations of
inferential arithmetic. To achieve these goals, we need a
high-rate quantization theory specific to neural networks and
differing significantly in its mathematical development from
the theory of distributed functional quantization [17].

When the number of quantization points K is high, for any
edge e`, |we`−Q(we`)| is small. Hence, using a Taylor series
approximation, for any smooth differentiable Φ at large K:

Φ(xn, {we`})− Φ(xn, {Q(we`)})

=
∑
e`

∂Φ(xn, {Q(we`)})
∂we`

(we` −Q(we`)) + o

(
1

K

)
.

Our goal is to find the best Q that minimizes an appropriate
error metric. In this paper we use MSE

EXn

(∑
e`

∂Φ(Xn, {Q(we`)})
∂we`

(we` −Q(we`))

)2

. (1)

Let the representation points in [0, 1] for a given quantizer
Q be a1, a2, . . . , aK . For Q, the error in quantizing a weight
w depends only on w, which we denote by ∆(w). Thus,

Φ(xn, {we`})− Φ(xn, {Q(we`)}) (2)

=
∑
e`

∂Φ(xn, {Q(we`)})
∂we`

(we` −Q(we`))

=

V∑
v=0

∆(w)
∑

e`:w
e`
∈((k−1) 1

V ,k
1
V]

∂Φ(xn, {Q(we`)})
∂we`

,

for any V ∈ Z+. We make the following assumptions to derive
an optimal high rate quantizer.

Assumption 1: V
∑
e`:w

e`
∈((k−1) 1

V ,k
1
V]

∂Φ(X,{Q(w
e`

)})
∂w

e`
con-

verges almost surely (over the probability space of Xn) to a
differentiable function GX(w) as V →∞ .

Assumption 2: We assume large network and high rate of
quantization, i.e. K,n→∞, but K � n.
Assumption 1 holds for neural networks with many edges
if the empirical distribution of edge weights approximates
a smooth probability density function (pdf). Unlike Sec. II,
the theory developed here is valid only for quantizing neural
networks with many synapses. So, (2) can be written as∫

∆(w)GX(w)dw. Defining a0 = 0 and aK+1 = 1, another
way to write (2) is

K+1∑
k=1

∫
w∈(ak−1,ak]

∆(w)GX(w)dw.

Consider
∫
w∈(ak−1,ak]

∆(w)GX(w)dw for 2 ≤ k ≤ K.
Define āk := ak−1+ak

2 and δk := ak−ak−1

2 . Over (ak−1, āk)
error ∆(w) is positive and changes from 0 to δk, whereas over
(āk, ak) error ∆(w) is negative and changes from −δk to 0.
This observation yields the following steps.∫

w∈(ak−1,ak]

∆(w)GX(w)dw

=

∫ āk

ak−1

(w − ak−1)GX(w)dw +

∫ ak

āk

(w − ak)GX(w)dw

=

∫ δk

0

[GX(āk − u)−GX(āk + u)] (δk − u) du.

Here the last step follows by rearranging the integrals and
change of variables where w ∈ (ak−1, ak] is replaced by u+āk
for u ∈ [−δk,+δk].

For large K, |ak − ak−1| is small. In this regime

GX(āk − u)−GX(āk + u) = −2

[
∂GX(w)

∂w

]
āk

u+ o(u2).

Using this,
∫
w∈(ak−1,ak]

∆(w)GX(w)dw becomes

1

24

[
∂GX(w)

∂w

]
āk

|ak − ak−1|3 + o(|ak − ak−1|3).

This expression holds for k = 2 to K, at large K. As terms
corresponding to k = 1 and k = K + 1 are o(1

K), we obtain
(2) by summing this term from k = 2 to k = K:

K∑
k=2

1

24

([
∂GX(w)

∂w

]
āk

|ak − ak−1|3 + o(|ak − ak−1|3
)
.

From this we obtain an expression for (2) in terms of point
density function λ. At w there are Kλ(w) + o(K) points and
hence, around w the partition width |ak − ak−1| = 1

Kλ(w) +

o
(

1
K

)
. Hence,

K∑
k=2

1

24

[
∂GX(w)

∂w

]
āk

|ak − ak−1|3

=
∑

(w,w+dw]

∑
k:ak∈(w,w+dw]

1

24

∂GX(w)

∂w

1

(Kλ(w))
3 + o

(
1

K3

)
.

Now, as the number of quantization points in (w,w + dw]

is Kλ(w)dw, and as ∂GX(w)
∂w can be treated as constant over

(w,w + dw] (changes by o(dw)), we can further derive the
following expression for (2).∑
w

(Kλ(w)dw)

[
∂GX(w)

∂w

1

24 (Kλ(w))
3 + o

(
1

(Kλ(w))
3

)]

=
1

24K2

∫
∂GX(w)

∂w

1

λ2(w)
dw + o

(
1

K2

)
.

Before delving into error analysis and choice of point density
function for a general setting, consider a few special cases.

For uniform quantization, it follows that MSE has a simple
expression: 1

24K2EX

[
(GX(1)−GX(0))2

]
. Thus, if GX(1) =

GX(0) for all X, then at high rate, the uniform quantizer is
optimal and achieves 0 MSE.

Another special case is the scenario where the input dis-
tribution is such that for some function G̃(w), PX{G̃(w) =
∂GX(w)
∂w for all w} = 1, i.e., ∂GX(w)

∂w is almost surely in-
dependent of X. Then the error is 1

24K2

∫ G̃(w)
λ2(w)dw. From

Hölder’s inequality it follows that the error is minimized at
a point density λ∗(w) = (G̃(w))1/3∫

(G̃(w))1/3
, and the minimum is

1
24K2 ||G̃(w))||1/3.

Now, we move back to the general case. For a point density
function λ and a large K, the error in (1) becomes

1

24K2
EX

[(∫
∂GX(w)

∂w

1

λ2(w)
dw

)2
]

(3)

=
1

24K2

∫∫
EX

[
∂GX(w)

∂w

∂GX(w′)

∂w′

]
1

λ2(w)λ2(w′)
dwdw′,

where the exchange of the integrals and the expectation is
possible by Fubini’s theorem, as |∂GX(w)

∂w | is bounded for any
bounded X and w for all smooth neuron activation functions;
for smooth activation functions with bounded inputs, deriva-
tives are bounded. The final goal is to find the optimal point
density function λ∗ to minimize (3).

Define G(w,w′) = EX

[
∂GX(w)
∂w

∂GX(w′)
∂w′

]
. Note that

G(w,w′) is symmetric in the input variables, i.e., G(w,w′) =
G(w′, w) for all w,w′. Also, define the following problem for
a function U : [0, 1]2 → R:

min
Λ≥0:

∫
Λdwdw′=1

∣∣∣∣∣
∫
S+

U(w,w′)

(Λ(w,w′))2
dwdw′

∣∣∣∣∣ . (4)

Note that the minimum of (4) for U = G is a lower bound on
the minimum of (3). This is because (3) is non-negative for
all λ and if the optimal of (3) is λ∗(w) then λ∗(w)λ∗(w′) is
a feasible solution of (4). Intuitively, a point density λ with
λ(w)λ(w′) closely resembling the optimum Λ of (4) would
make (3) close to its minimum value. Indeed, if for a λ,
λ(w)λ(w′) exactly matches the optimum of (4), then that λ
is the optimal quantization point density.

Consider the sets S+ = {(w,w′) : G(w,w′) > 0},
S− = {(w,w′) : G(w,w′) < 0}, and the functions G+ =
max(G, 0),G− = max(−G, 0). Then (3) can be written as∫

S+

G+(w,w′)

(λ(w)λ(w′))2
dwdw′ −

∫
S−

G−(w,w′)

(λ(w)λ(w′))2
dwdw′.

Let Λ∗+(w,w′) and Λ∗−(w,w′) be the solutions of (4) for
U = G+ and U = G− respectively. It follows that Λ∗+ and
Λ∗− are 0 on S− and S+ respectively. Otherwise, the integral
can be strictly decreased by equally distributing the mass that
Λ∗+ or Λ∗− puts in S− or S+ among elements in S+ or S−,
respectively.

Also, as G+(w,w′) or G−(w,w′) is symmetric in the
arguments, so is Λ∗+ or Λ∗−. This can be argued by showing
that if Λ is asymmetric, then distributing mass symmetrically
between (w,w′) and (w,w′) reduces the integral. This is due
to the fact that 1/x2 +1/y2 is minimized at x = y when x+y

is constrained to be 1 and x, y ≥ 0. For non-trivial S+ and
S−, the errors terms (integrals) corresponding to S+ and S−
are strictly positive, so there exists an α > 0 such that

α

∫
S+

G+(w,w′)

(Λ∗+(w,w′))2
dwdw′ =

∫
S−

G−(w,w′)

(Λ∗−(w,w′))2
dwdw′.

For non-trivial S+ and S−, define Λ∗(w,w′) =
1√
α+1

(√
αΛ∗+(w,w′) + Λ∗−(w,w′)

)
. It is not hard to see that

Λ∗ is the solution of (4) for U = G. This is because on S+

we have Λ∗ =
√
αΛ∗+ and on S− Λ∗ = Λ−, and hence, the

integral on S+ and that on S− cancel one another.
Using the fact that

∫
S+

Λ∗+ = 1 and Hölder’s inequality,
following the derivation in [17, Thm. 13], we obtain:

Λ∗+(w,w′) =
(G+(w,w′))

1
3∫

S+
(G+(w,w′))

1
3

.

A closed-form expression for Λ∗(w,w′) then follows directly.
Consider the case where S+ is [0, 1]2, and G+(w,w′) has

a separable product form, i.e., G+(w,w′) = Ĝ+(w)Ĝ+(w′)
for some Ĝ. Then, Λ∗ is Λ∗+. As G is separable,
Λ∗(w,w′) = (Ĝ+(w)Ĝ+(w′))

1
3 /
∫
S+

(G+(w,w′))
1
3 . This im-

plies that Λ∗(w,w′) = λ∗(w)λ∗(w′) for λ∗(w) is given by

(Ĝ+(w))
1
3∫

S+
(Ĝ+(w))

1
3

=

∫
Λ∗(w,w′)dw′. (5)

Though G may not have a closed-form expression in all
neural network applications, from the empirical values of G,
S+, and S− can be easily computed and separability of G+

can be also be checked by verifying whether G+(w,w′) =
(
∫
G+(w,w′)dw)(

∫
G+(w,w′)dw′).

For general G, there is no generic method to obtain λ∗ from
Λ∗. We will soon give some approaches to find good surrogates
for λ∗ based on regularization, but before that we address an
important concern. Though neural networks can be thought
of as Φ(w,X), obtaining Φ and ∂Φ(w,X)

∂w as closed-form
expressions may not be feasible. Obtaining these is crucial
for computing G and therefore for designing the optimal
quantizer. Notwithstanding, though Φ may not be known, at
any given X, ∂Φ(w,X)

∂w can be evaluated using the chain rule of
differentiation and the celebrated backpropagation algorithm,
which is also used to train neural networks. As long as the
neural activation functions can be differentiated analytically,
∂Φ(w,X)

∂w can be obtained computationally. To obtain G, one
can collect many samples of ∂Φ(w,X)

∂w for different X, and
obtain a good empirical estimate of the expected quantities.

For a given G, S+, and S−, if we can find λ∗ such that
Λ∗(w,w′) = λ∗(w)λ∗(w′), then λ∗ is the optimal solution of
(3). Λ∗ can be seen as a two-dimensional pdf, whereas λ∗ is a
one-dimensional pdf. Thus finding λ∗ such that Λ∗(w,w′) =
λ∗(w)λ∗(w′) can be seen as approximating the joint pdf Λ∗

by a product form with the same marginals. Towards this,
we minimize relative entropy between the joint pdf and the
product pdf:

λ† = arg min
λ≥0:

∫
λ=1

∫
Λ∗(w,w′) log

Λ∗(w,w′)

λ(w)λ(w′)
dwdw′.

Fig. 2. MSE ratio between heuristic and uniform quantizers, as function
of number of quantization levels, for several specific neural networks whose
weights are from beta distributions (2, 2) and have square-root activation
functions.

If the objective is 0 at λ† then λ∗ = λ†, otherwise it is the best
approximation of λ∗ in relative entropy. Thus, λ† that comes
from the above regularization can be used as a surrogate for
λ∗ with a relative entropy guarantee.

It is not hard to see the optimization problem reduces to

arg min
λ≥0:

∫
λ=1

∫ (∫
Λ∗(w,w′)dw′

)
(− log λ(w))dw.

Using variational methods it can be shown that the optimal
solution λ† =

∫
Λ∗(w,w′)dw′. If w,w′ are from a finite

discrete space and the integration is a finite sum, the result
follows by considering the Lagrangian of the problem and the
KKT conditions.

We study effectiveness of this design heuristic through
simulations. Our simulation setting consists of three-layer,
fully-connected neural networks with 50 input nodes, 100
nodes each in the next two layers, and a single output
node. Weights between the input layer and the next layer
are drawn randomly from a beta (2, 2) distribution. All edges
from the second hidden layer to the output node as well as
those between the two hidden layers have unit weights. The
activation function is a square-root. For a given draw of edge
weights the network realizes a randomly chosen function. For
numerical computation of G(w,w′) we use the approximation:
G(w,w′) ≈ Cp(w)p(w′), where C depends on the moments of
X and p(w). This approximation is reasonable for computing
G in a dense and symmetric network. Fig. 2 compares the MSE
of the proposed heuristic design against that of the uniform
quantizer for a few different draws of the network for different
number of quantization levels K and shows significant gains.
MSEs have been empirically computed by averaging the
square of the differences between network outputs with exact
and quantized edge weights over 1000 input values drawn from
the uniform distribution.

IV. CONCLUSION

Efficient quantization of large neural networks is important
for the success of real-time mobile and in-sensor inference.
Motivated by a lack of formal approaches to this problem, we
develop a framework based on high-rate quantization theory.
Though intuitions from distributed functional quantization [17]
are useful in this regard, quantization of neural networks
differs significantly due to dependencies between edge weights
and the impacts of random network inputs. We develop a

new approach that addresses these issues and results in an
optimal quantizer design. Under certain conditions, we get a
quantizer with certain regularization guarantees with respect to
the optimal quantizer and with a good empirical performance.

REFERENCES

[1] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP 2014), May 2014, pp. 8326–8330.

[2] Z. Wang, K. H. Lee, and N. Verma, “Overcoming computational errors
in sensing platforms through embedded machine-learning kernels,” IEEE
Trans. VLSI Syst., vol. 23, no. 8, pp. 1459–1470, Aug. 2015.

[3] S. Zhang and N. R. Shanbhag, “Reduced overhead error compensation
for energy efficient machine learning kernels,” in Proc. 2015 IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2015, pp. 15–21.

[4] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proc. 42nd
Annu. Int. Symp. Comput. Archit. (ISCA ’15), Jun. 2015, pp. 105–117.

[5] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN: An ultra-
low power convolutional neural network accelerator based on binary
weights,” in Proc. 2016 IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2016, pp. 236–241.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan.
2017.

[7] N. R. Shanbhag, “Energy-efficient machine learning in silicon: A
communications-inspired approach,” arXiv:1611.03109 [cs.LG]., Oct.
2016.

[8] M. Courbariaux, Y. Bengio, and J.-P. David, “Low precision arithmetic
for deep learning,” arXiv:1412.7024 [cs.LG]., Dec. 2014.

[9] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML 2015).

[10] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep con-
volutional networks using vector quantization,” arXiv:1412.6115, Dec.
2014.

[11] S. Basu and L. R. Varshney, “Universal source coding of deep neural
networks,” in Proc. IEEE Data Compression Conf. (DCC 2017), Apr.
2017.

[12] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proc. 32nd Int. Conf.
Mach. Learn. (ICML 2015), Jul. 2015.

[13] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
arXiv:1603.05279 [cs.CV]., Mar. 2016.

[14] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantiza-
tion of deep convolutional networks,” arXiv:1511.06393 [cs.LG]., Jun.
2015.

[15] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv:1510.00149 [cs.CV]., Oct. 2015.

[16] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[17] V. Misra, V. K. Goyal, and L. R. Varshney, “Distributed scalar quan-
tization for computing: High-resolution analysis and extensions,” IEEE
Trans. Inf. Theory, vol. 57, no. 8, pp. 5298–5325, Aug. 2011.

[18] V. Misra and K. Viswanathan, “Sequential functional quantization,” in
Proc. 2013 IEEE Int. Symp. Inf. Theory, Jul. 2013, pp. 2359–2363.

[19] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989.

[20] P. Kumaraswamy, “A generalized probability density function for
double-bounded random processes,” J. Hydrol. (Amst.), vol. 46, no. 1/2,
pp. 79–88, Mar. 1980.

