
Probabilistic Rule Realization and Selection

Haizi Yu⇤†

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801
haiziyu7@illinois.edu

Tianxi Li⇤
Department of Statistics
University of Michigan
Ann Arbor, MI 48109
tianxili@umich.edu

Lav R. Varshney†

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801
varshney@illinois.edu

Abstract

Abstraction and realization are bilateral processes that are key in deriving intelli-
gence and creativity. In many domains, the two processes are approached through
rules: high-level principles that reveal invariances within similar yet diverse ex-
amples. Under a probabilistic setting for discrete input spaces, we focus on the
rule realization problem which generates input sample distributions that follow
the given rules. More ambitiously, we go beyond a mechanical realization that
takes whatever is given, but instead ask for proactively selecting reasonable rules to
realize. This goal is demanding in practice, since the initial rule set may not always
be consistent and thus intelligent compromises are needed. We formulate both rule
realization and selection as two strongly connected components within a single and
symmetric bi-convex problem, and derive an efficient algorithm that works at large
scale. Taking music compositional rules as the main example throughout the paper,
we demonstrate our model’s efficiency in not only music realization (composition)
but also music interpretation and understanding (analysis).

1 Introduction

Abstraction is a conceptual process by which high-level principles are derived from specific examples;
realization, the reverse process, applies the principles to generalize [1, 2]. The two, once combined,
form the art and science in developing knowledge and intelligence [3, 4]. Neural networks have
recently become popular in modeling the two processes, with the belief that the neurons, as distributed
data representations, are best organized hierarchically in a layered architecture [5, 6]. Probably the
most relevant such examples are auto-encoders, where the cascaded encoder and decoder respectively
model abstraction and realization. From a different angle that aims for interpretability, this paper first
defines a high-level data representation as a partition of the raw input space, and then formalizes
abstraction and realization as bi-directional probability inferences between the raw inputs and its
high-level representations.

While abstraction and realization is ubiquitous among knowledge domains, this paper embodies the
two as theory and composition in music, and refers to music high-level representations as compo-
sitional rules. Historically, theorists [7, 8] devised rules and guidelines to describe compositional

⇤Equal contribution.
†Supported by the IBM-Illinois Center for Cognitive Computing Systems Research (C3SR), a research

collaboration as part of the IBM Cognitive Horizons Network.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
9.

01
67

4v
1

 [
cs

.L
G

]
 6

 S
ep

 2
01

7

regularities, resulting in music theory that serves as the formal language to speak of music style and
composers’ decisions. Automatic music theorists [9–11] have also been recently developed to extract
probabilistic rules in an interpretable way. Both human theorists and auto-theorists enable teaching
of music composition via rules such as avoiding parallel octaves and resolving tendency tones. So,
writing music, to a certain extent (e.g. realizing a part-writing exercise), becomes the process of
generating “legitimate” music realizations that satisfy the given rules.

This paper focuses on the realization process in music, assuming rules are given by a preceding
abstraction step. There are two main challenges. First, rule realization: problem occurs when one
asks for efficient and diverse music generation satisfying the given rules. Depending on the rule
representation (hard or probabilistic), there are search-based systems that realize hard-coded rules to
produce music pieces [12, 13], as well as statistical models that realize probabilistic rules to produce
distributions of music pieces [9, 14]. Both types of realizations typically suffer from the enormity of
the sample space, a curse of input dimensionality. Second, rule selection (which is subtler): not all
rules are equally important nor are they always consistent. In some cases, a perfect and all-inclusive
realization is not possible, which requires relaxation/sacrifice of some rules. In other cases, composers
intentionally break certain rules to establish unique styles. So the freedom and creativity in selecting
the “right” rules for realization poses the challenge.

The main contribution of the paper is to propose and implement a unified framework that makes
reasonable rule selections and realizes them in an efficient way, tackling the two challenges in one
shot. As one part of the framework, we introduce a two-step dimensionality reduction technique —
a group de-overlap step followed by a screening step — to efficiently solve music rule realization.
As the other part, we introduce a group-level generalization of the elastic net penalty [15] to weight
the rules for a reasonable selection. The unified framework is formulated as a single bi-convex
optimization problem (w.r.t. a probability variable and a weight variable) that coherently couples the
two parts in a symmetric way. The symmetry is beneficial in both computation and interpretation. We
run experiments on artificial rule sets to illustrate the operational characteristics of our model, and
further test it on a real rule set that is exported from an automatic music theorist [11], demonstrating
the model’s selectivity in music rule realization at large scale.

2 The Formalism: Abstraction, Realization, and Rule

Abstraction and Realization We restrict our attention to raw input spaces that are discrete and
finite: X = {x1, . . . , xn}, and assume the raw data is drawn from a probability distribution pX ,
where the subscript refers to the sample space (not a random variable). We denote a high-level
representation space (of X) by a partition A (of X) and its probability distribution by pA. Partitioning
the raw input space gives one way of abstracting low-level details by grouping raw data into clusters
and ignoring within-cluster variations. Following this line of thought, we define an abstraction as the
process: (X , pX) ! (A, pA) for some high-level representation A, where pA is inferred from pX by
summing up the probability masses within each partition cluster. Conversely, we define a realization
as the process: (A, pA) ! (X , pX), where pX is any probability distribution that infers pA.

Probabilistic Compositional Rule To put the formalism in the context of music, we first follow
the convention [9] to approach a music piece as a sequence of sonorities (a generic term for chord)
and view each moment in a composition as determining a sonority that fits the existing music context.
If we let ⌦ be a finite collection of pitches specifying the discrete range of an instrument, e.g. the
collection of the 88 keys on a piano, then a k-part sonority — k simultaneously sounding pitches — is
a point in ⌦k. So X = ⌦k is the raw input space containing all possible sonorities. Although discrete
and finite, the raw input size is typically large, e.g. |X | = 884 considering piano range and 4-part
chorales. Therefore, theorists have invented various music parameters such as quality and inversion,
to abstract specific sonorities. In this paper, we inherit the approach in [11] to formalize a high-
level representation of X by a feature-induced partition A, and call the output of the corresponding
abstraction (A, pA) a probabilistic compositional rule.

Probabilistic Rule System The interrelation between abstraction and realization (X , pX) $
(A, pA) can be formalized by a linear equation: Ap = b, where A 2 {0, 1}m⇥n represents a partition
(Aij = 1 if and only if xj is assigned to the ith cluster in the partition), and p = pX , b = pA are
probability distributions of the raw input space and the high-level representation space, respectively.

2

In the sequel, we represent a rule by the pair (A, b), so realizing this rule becomes solving the
linear equation Ap = b. More interestingly, given a set of rules: (A(1), b(1)), . . . , (A(K), b(K)), the
realization of all of them involves finding a p such that A(r)p = b(r), for all r = 1, . . . , K. In this
case, we form a probabilistic rule system by stacking all rules into one single linear system:

A =

2
64

A(1)

...
A(K)

3
75 2 {0, 1}m⇥n, b =

2
64

b(1)

...
b(K)

3
75 2 [0, 1]m. (1)

We call A
(r)
i,: p = b

(r)
i a rule component, and mr = dim(b(r)) the size (# of components) of a rule.

3 Unified Framework for Rule Realization and Selection

In this section, we detail a unified framework for simultaneous rule realization and selection. Recall
rules themselves can be inconsistent, e.g. rules learned from different music contexts can conflict.
So given an inconsistent rule system, we can only achieve Ap ⇡ b. To best realize the possibly
inconsistent rule system, we solve for p 2 �n by minimizing the error kAp � bk2

2 =
P

r kA(r)p �
b(r)k2

2, the sum of the Brier scores from every individual rule. This objective does not differentiate
rules (or their components) in the rule system, which typically yields a solution that satisfies all
rules approximately and achieves a small error on average. This performance, though optimal in the
averaged sense, is somewhat disappointing since most often no rule is satisfied exactly (error-free).
Contrarily, a human composer would typically make a clear separation: follow some rules exactly
and disregard others even at the cost of a larger realization error. The decision made on rule selection
usually manifests the style of a musician and is a higher level intelligence that we aim for. In this
pursuit, we introduce a fine-grained set of weights w 2 �m to distinguish not only individual rules
but also their components. The weights are estimates of relative importance, and are further leveraged
for rule selection. This yields a weighted error, which is used herein to measure realization quality:

E(p, w; A, b) = (Ap � b)> diag(w)(Ap � b). (2)

If we revisit the two challenges mentioned in Sec. 1, we see that under the current setting, the first
challenge concerns the curse of dimensionality for p, while the second concerns the selectivity for w.
We introduce two penalty terms, one each for p and w, to tackle the two challenges, and propose the
following bi-convex optimization problem as the unified framework:

minimize E(p, w; A, b) + �pPp(p) + �wPw(w) (3)
subject to p 2 �n, w 2 �m.

Despite contrasting purposes, both penalty terms, Pp(p) and Pw(w), adopt the same high-level
strategy of exploiting group structures in p and w. Regarding the curse of dimensionality, we exploit
the group structure of p by grouping pj and pj0 together if the jth and j0th columns of A are identical,
partitioning p’s coordinates into K 0 groups: g01, . . . , g

0
K0 where K 0 is the number of distinct columns

of A. This grouping strategy uses the fact that in a simplex-constrained linear system, we cannot
determine the individual pjs within each group but only their sum. We later show (Sec. 4.1) the
resulting group structure of p is essential in dimensionality reduction (when K 0 ⌧ n) and has a
deeper interpretation regarding abstraction levels. Regarding the rule-level selectivity, we exploit
the group structure of w by grouping weights together if they are associated with the same rule,
partitioning w’s coordinates into K groups: g1, . . . , gK where K is the number of given rules. Based
on the group structures of p and w, we introduce their corresponding group penalties as follows:

Pp(p) = kpg0
1
k2
1 + · · · + kpg0

K0 k2
1, (4)

P 0
w(w) =

p
m1kwg1

k1
2 + · · · +

p
mKkwgK

k1
2. (5)

One can see the symmetry here: group penalty (4) on p is a squared, unweighted L2,1-norm, which is
designed to secure a unique solution that favors more randomness in p for the sake of diversity in
sonority generation [9]; group penalty (5) on w is a weighted L1,2-norm (group lasso), which enables
rule selection. However, there is a pitfall of the group lasso penalty when deployed in Problem (3):
the problem has multiple global optima that are indefinite about the number of rules to pick (e.g.
selecting one rule and ten consistent rules are both optimal). To give more control over the number of

3

selections, we finalize the penalty on w as the group elastic net that blends between a group lasso
penalty and a ridge penalty:

Pw(w) = ↵P 0
w(w) + (1 � ↵)kwk2

2, 0  ↵  1, (6)

where ↵ balances the trade-off between rule elimination (less rules) and selection (more rules).

Model Interpretation Problem (3) is a bi-convex problem: fixing p it is convex in w; fixing w it is
convex in p. The symmetry between the two optimization variables further gives us the reciprocal
interpretations of the rule realization and selection problem: given p — the music realization — we
can analyze its style by computing w; given w — the music style — we can realize it by computing p
and further sample from it to obtain music that matches the style. The roles of the hyperparameters
�p and (�w, ↵) are quite different. In setting �p sufficiently small, we secure a unique solution for
the rule realization part. However, for the rule selection part, what is more interesting is that adjusting
�w and ↵ allows us to guide the overall composition towards different directions, e.g. conservative
(less strictly obeyed rules) versus liberal (more loosely obeyed rules).

Model Properties We state two properties of the bi-convex problem (3) as the following theorems
whose proofs can be found in the supplementary material. Both theorems involve the notion of group
selective weight. We say w 2 �m is group selective if for every rule in the rule set, w either drops
it or selects it entirely, i.e. either wgr

= 0 or wgr
> 0 element-wisely, for any r = 1, . . . , K. For a

group selective w, we further define suppg(w) to be the selected rules, i.e. suppg(w) = {r | wgr
>

0 element-wisely} ⇢ {1, . . . , K}.
Theorem 1. Fix any �p > 0, ↵ 2 [0, 1]. Let (p?(�w), w?(�w)) be a solution path to problem (3).
(1) w?(�w) is group selective, if �w > 1/↵.
(2) kw?

gr
(�w)k2 ! p

mr/m as �w ! 1, for r = 1, . . . , K.

Theorem 2. For �p = 0 and any �w > 0, ↵ 2 [0, 1], let (p?, w?) be a solution to problem (3). We
define C ⇢ 2{1,...,K} such that any C 2 C is a consistent (error-free) subset of the given rule set. If
suppg(w

?) 2 C, then
P

r2suppg(w?) mr �Pr2C mr, for all C 2 C.

Thm. 1 implies a useful range of the �w-solution path: if �w is too large, w? will converge to a
known value that always selects all the rules; if �w is too small, w? can lose the guarantee to be
group selective. This further suggests the termination criteria used later in the experiments. Thm. 2
considers rule selection in the consistent case, where the solution selects the largest number of rule
components among all other consistent rule selections. Despite the condition �p = 0, in practice, this
theorem suggests one way of using model for a small �p: if the primary interest is to select consistent
rules, the model is guaranteed to pick as many rule components as possible (Sec. 5.1). Yet, a more
interesting application is to slightly compromise consistency to achieve better selection (Sec. 5.2).

4 Alternating Solvers for Probability and Weight

It is natural to solve the bi-convex problem (3) by iteratively alternating the update of one optimization
variable while fixing the other, yielding two alternating solvers.

4.1 The p-Solver: for Rule Realization

If we fix w, the optimization problem (3) boils down to:

minimize E(p, w; A, b) + �pPp(p) (7)
subject to p 2 �n.

Making a change of variable: qk = 1>pg0
k

= kpg0
k
k1 for k = 1, . . . , K 0 and letting q = (q1, . . . , qK0),

problem (7) is transformed to its reduced form:

minimize E(p, w; A0, b) + �pkqk2
2 (8)

subject to q 2 �K0
,

where A0 is obtained from A by removing its column duplicates. Problem (8) is a convex problem
with a strictly convex objective, so it has a unique solution q?. However, the solution to the original

4

G1

G2 G3
G0

3G0
2

G0
1

G0
4

G0
5G0

6
G0

7

G = {G1, G2, G3} DeO(G) = {G0
1, G

0
2, G

0
3, G

0
4, G

0
5, G

0
6, G

0
7}

g(x) =

�
�����������
�����������

(1, 0, 0), x 2 G0
1

(0, 1, 0), x 2 G0
2

(0, 0, 1), x 2 G0
3

(0, 1, 1), x 2 G0
4

(1, 0, 1), x 2 G0
5

(1, 1, 0), x 2 G0
6

(1, 1, 1), x 2 G0
7

De-Overlap

Figure 1: An example of group de-overlap.

problem (7) may not be unique: any p? satisfying q?k = 1>p?g0
k

is a solution to (7). To favor a
more random p (as discussed in Sec. 3), we can uniquely determine p? by uniformly distributing the
probability mass qk within the group g0k: p?g0

k
= (qk/ dim(pg0

k
))1, k = 1, . . . , K 0.

Dimensionality Reduction: Group De-Overlap Problem (7) is of dimension n, while its reduced
form (8) is of dimension K 0( n) from which we can attain dimensionality reduction. In cases where
K 0 ⌧ n, we have a huge speed-up for the p-solver; in other cases, there is still no harm to always run
the p-solve from the reduced problem (8). Recall that we have achieved this type of dimensionality
reduction by exploiting the group structure of p purely from a computational perspective (Sec. 3).
However, the resulting group structure has a deeper interpretation regarding abstraction levels, which
is closely related to the concept of de-overlapping a family of groups, group de-overlap in short.

(Group De-Overlap) Let G = {G1, . . . , Gm} be a family of groups (a group is a non-empty set), and
G = [m

i=1Gi. We introduce a group assignment function g : G 7! {0, 1}m, such that for any x 2 G,
g(x)i = {x 2 Gi}, and further introduce an equivalence relation ⇠ on G: x ⇠ x0 if g(x) = g(x0).
We then define the de-overlap of G, another family of groups, by the quotient space

DeO(G) = {G0
1, . . . , G

0
m0} := G/ ⇠ . (9)

The idea of group de-overlap is simple (Fig. 1), and DeO(G) indeed comprises non-overlapping
groups, since it is a partition of G that equals the set of equivalence classes under ⇠.

Now given a set of rules (A(1), b(1)), . . . , (A(K), b(K)), we denote their corresponding high-level
representation spaces by A(1), . . . , A(K), each of which is a partition of the raw input space X
(Sec. 2). Let G = [K

k=1A(k), then DeO(G) is a new partition — hence a new high-level representation
space — of G = X , and is finest (may be tied) among all partitions A(1), . . . , A(K). Therefore,
DeO(G), as a summary of the rule system, delimits a lower bound on the level of abstraction produced
by the given set of rules/abstractions. What coincides with DeO(G), is the group structure of p (recall:
pj and pj0 are grouped together if the jth and j0th columns of A are identical), since for any xj 2 X ,
the jth column of A is precisely the group assignment vector g(xj). Therefore, the decomposed
solve step from q? to p? reflects the following realization chain:

n
(A(1), pA(1)), . . . , (A(K), pA(K))

o
! (DeO(G), q?) ! (X , pX), (10)

where the intermediate step not only computationally achieves dimensionality reduction, but also
conceptually summarizes the given set of abstractions and is further realized in the raw input space.

Note that the �-algebra of the probability space associated with (8) is precisely generated by DeO(G).
When rules are inserted into a rule system sequentially (e.g. the growing rule set from an automatic
music theorist), the successive solve of (8) is conducted along a �-algebra path that forms a filtration:
nested �-algebras that lead to finer and finer delineations of the raw input space. In a pedagogical
setting, the filtration reflects the iterative refinements of music composition from high-level principles
that are taught step by step.

Dimensionality Reduction: Screening We propose an additional technique for further dimension-
ality reduction when solving the reduced problem (8). The idea is to perform screening, which quickly
identifies the zero components in q? and removes them from the optimization problem. Leveraging
DPC screening for non-negative lasso [16], we introduce a screening strategy for solving a general

5

simplex-constrained linear least-squares problem (one can check problem (8) is indeed of this form):

minimize kX� � yk2
2, subject to � ⌫ 0, k�k1 = 1. (11)

We start with the following non-negative lasso problem, which is closely related to problem (11):

minimize ��(�) := kX� � yk2
2 + �k�k1, subject to � ⌫ 0, (12)

and denote its solution by �?(�). One can show that if k�?(�?)k1 = 1, then �?(�?) is a solution
to problem (11). Our screening strategy for problem (11) runs the DPC screening algorithm on the
non-negative lasso problem (12), which applies a repeated screening rule (called EDPP) to solve a
solution path specified by a �-sequence: �max = �0 > �1 > · · · . The `1-norms along the solution
path are non-decreasing: 0 = k�?(�0)k1  k�?(�1)k1  · · · . We terminate the solution path at �t

if k�?(�t)k1 � 1 and k�?(�t�1)k1 < 1. Our goal is to use �?(�t) to predict the zero components in
�?(�?), a solution to problem (11). More specifically, we assume that the zero components in �?(�t)
are also zero in �?(�?), hence we can remove those components from � (also the corresponding
columns of X) in problem (11) and reduce its dimensionality.

While in practice this assumption is usually true provided that we have a delicate solution path, the
monotonicity of �?(�)’s support along the solution path does not hold in general [17]. Nevertheless,
the assumption does hold when k�?(�t)k1 ! 1, since the solution path is continuous and piecewise
linear [18]. Therefore, we carefully design a solution path in the hope of a �?(�t) whose `1-norm is
close to 1 (e.g. let �i = ��i�1 with a large � 2 (0, 1), while more sophisticated design is possible
such as a bi-section search). To remedy the (rare) situations where �?(�t) predicts some incorrect
zero components in �?(�?), one can always leverage the KKT conditions of problem (11) as a final
check to correct those mis-predicted components [19]. Finally, note that the screening strategy may
fail when the `1-norms along the solution path converge to a value less than 1. In these cases we can
never find a desired �t with k�?(�t)k1 � 1. In theory, such failure can be avoided by a modified
lasso problem which in practice does not improve efficiency much (see the supplementary material).

4.2 The w-Solver: for Rule Selection

If we fix p, the optimization problem (3) boils down to:

minimize E(p, w; A, b) + �wPw(w) (13)
subject to w 2 �m.

We solve problem (13) via ADMM [20]:

w(k+1) = arg min
w

e>w + �wPw(w) + ⇢
2kw � z(k) + u(k)k2

2, (14)

z(k+1) = arg min
z

I�m(z) + ⇢
2kw(k+1) � z + u(k)k2

2, (15)

u(k+1) = u(k) + w(k+1) � z(k+1). (16)

In the w-update (14), we introduce the error vector e = (Ap � b)2 (element-wise square), and obtain
a closed-form solution by a soft-thresholding procedure [21]: for r = 1, . . . , K,

w(k+1)
gr

=

1 � �w↵

p
mr

(⇢ + 2�w(1 � ↵)) · kẽ(k)
gr k2

!

+

ẽ(k)
gr

, where ẽ(k) =
⇢(z(k) � u(k)) � e

⇢ + 2�w(1 � ↵)
. (17)

In the z-update (15), we introduce the indicator function I�m(z) = 0 if z 2 �m and 1 otherwise,
and recognize it as a (Euclidean) projection onto the probability simplex:

z(k+1) = ⇧�m(w(k+1) + u(k)), (18)

which can be solved efficiently by a non-iterative method [22]. Given that ADMM enjoys a linear
convergence rate in general [23] and the problem’s dimension m ⌧ n, one execution of the w-
solver is cheaper than that of the p-solver. Indeed, the result from the w-solver can speed up the
subsequent execution of the p-solver, since we can leverage the zero components in w? to remove the
corresponding rows in A, yielding additional savings in the group de-overlap of the p-solver.

6

0

2.0

4.0
gr

ou
p

no
rm

× 10−2

rule 1
rule 2
rule 3
rule 4
rule 5

−8 −6 −4 −2 0 2
0

1.0

w
t.

er
r. × 10−4

log2 (λw)

(a) Case A1: ↵ = 0.8.

0

0.6

1.2

gr
ou

p
no

rm

× 10−1
rule 1
rule 2
rule 3
rule 4
rule 5

−8 −6 −4 −2 0 2
0

2.0

4.0

w
t.

er
r. × 10−4

log2 (λw)

(b) Case A2: ↵ = 0.8.

Figure 2: The �w-solution paths obtained from the two artificial rule sets. Each path is depicted by
the trajectories of the group norms (top) and the trajectory of the weighted errors (bottom).

5 Experiments

5.1 Artificial Rule Set

We generate two artificial rule sets: Case A1 and A2, both of which are derived from the same raw
input space X = {x1, . . . , xn} for n = 600, and comprise K = 5 rules. The rules in Case A1 are of
size 80, 50, 60, 60, 60, respectively; the rules in Case A2 are of size 70, 50, 65, 65, 65, respectively.
For both cases, rule 1&2 and rule 3&4 are the only two consistent sub rule sets of size � 2. The main
difference between the two cases is: in Case A1, rule 1&2 has a combined size of 130 which is larger
than rule 3&4 and in Case A2 it is opposite. Under different settings of the hyperparameters �w and
↵, our model selects different rule combinations exhibiting unique “personal” styles.

Tuning the blending factor ↵ 2 [0, 1] is relatively easy, since it is bounded and has a nice interpretation.
Intuitively, if ↵ ! 0, the effect of the group lasso vanishes, yielding a solution w? that is not selective;
if ↵ ! 1, the group elastic net penalty reduces to the group lasso, exposing the pitfall mentioned
in Sec. 3. Experiments show that if we fix a small ↵, the model picks either all five rules or none;
if we fix a large ↵, the group norms associated with each rule are highly unstable as �w varies.
Fortunately in practice, ↵ has a wide middle range (typically between 0.4 and 0.9), within which all
corresponding �w-solution paths look similar and perform stable rule selection. Therefore, for all
experiments herein, we fix ↵ = 0.8 and study the behavior of the corresponding �w-solution path.

We show the �w-solution paths in Fig. 2. Along the path, we plot the group norms (top, one curve per
rule) and the weighted errors (bottom). The former, formulated as kw?

gr
(�w)k2, describes the options

for rule selection; the latter, formulated as E(p?(�w), w?(�w); A, b), describes the quality of rule
realization. To produce the trajectories, we start with a moderate �w (e.g. �w = 1), and gradually
increase and decrease its value to bi-directionally grow the curves. We terminate the descending
direction when w?(�w) is not group selective and terminate the ascending direction when the group
norms converge. Both terminations are indicated by Thm. 1, and work well in practice. As �w grows,
the model transitions its compositional behavior from a conservative style (sacrifice a number of rules
for accuracy) towards a more liberal one (sacrifice accuracy for more rules). If we further focus on
the �ws that give us zero weighted error, Fig. 2a reveals rule 1&2, and Fig. 2b reveals rule 3&4, i.e.
the largest consistent subset of the given rule set in both cases (Thm. 2). Finally, we mention the
efficiency of our algorithm. Averaged over several runs on multiple artificial rule sets of the same size,
the run-time of our solver is 27.2 ± 5.5 seconds, while that of a generic solver (CVX) is 41.4 ± 3.8
seconds. We attribute the savings to the dimensionality reduction techniques introduced in Sec. 4.1,
which will be more significant at large scale.

5.2 Real Compositional Rule Set

As a real-world application, we test our unified framework on rule sets from an automatic music
theorist [11]. The auto-theorist teaches people to write 4-part chorales by providing personalized

7

A Appendix384

A.1 The KKT Condition of Simplex Constrained Linear Least-Squares385

A.2 An Equivalent Formulation of Simplex Constrained Linear Least-Squares386

A.3 The Convergence of Group Norms387

A.4 The Global Minimum of Problem (3) Under Consistency388

A.5 Miscellaneous389

Table 1: Compositional rule selections

log2(�w) selected rule set # of rules
of rule

components

[�12,�6] {10} 1 1540
[�5,�2] {3, 6, 10} 3 1699

[�1, 0] {3, 6, 9, 10} 4 2154
1 {3, 6, 8, 9, 10, 11, 13} 7 2136
2 {1, 3, 7, 9, 10, 11, 13} 7 2312
3 all 16 2417

11

0

1.0

2.0

gr
ou

p
no

rm rule 3
rule 6
rule 9
rule 10
others

× 10−2

−8 −6 −4 −2 0 2
0

1.0

w
t.

er
r. × 10−4

log2 (λw)

Figure 3: The �w-solution path obtained from a real compositional rule set.

rules at every stage of composition. In this experiment, we exported a set of 16 compositional rules
which aims to guide a student in writing the next sonority that follows well with the existing music
content. Each voice in a chorale is drawn from ⌦ = {R, G1, . . . , C6} that includes the rest (R) and
54 pitches (G1 to C6) from human vocal range. The resulting raw input space X = ⌦4 consists of
n = 554 ⇡ 107 sonorities, whose distribution lives in a very high dimensional simplex. This curse of
dimensionality typically fails most of the generic solvers in obtaining an acceptable solution within a
reasonable amount of time.

We show the �w-solution path associated with this rule set in Fig. 3. Again, the general trend shows
the same pattern here: the model turns into a more liberal style (more rules but less accurate) as
�w increases. Along the solution path, we also observe that the consistent range (i.e. the error-free
zone) is wider than that in the artificial cases. This is intuitive, since a real rule set should be largely
consistent with minor contradictions, otherwise it will confuse the student and lose its pedagogical
purpose. A more interesting phenomenon occurs when the model is about to leave the error-free
zone. When log2(�w) goes from 1 to 2, the combined size of the selected rules increases from 2136
to 2312 but the realization error increases only a little. Will sacrificing this tiny error be a smarter
decision to make? The difference between the selected rules at these two moments shows that rule
1 and 7 were added into the selection at log2(�w) = 2 replacing rule 6 and 8. Rule 1 is about the
bass line, while rule 6 is about tenor voice. It is known in music theory that outer voices (soprano
and bass) are more characteristic and also more identifiable than inner voices (alto and tenor) which
typically stay more or less stationary as background voices. So it is understandable that although
larger variety in the bass increases the opportunity for inconsistency (in this case not too much), it is
a more important rule to keep. Rule 7 is about the interval between soprano and tenor, while rule 8
describes a small feature between the upper two voices but does not have a meaning yet in music
theory. So unlike rule 7 that brings up the important concept of voicing (i.e. classifying a sonority
into open/closed/neutral position), rule 8 could simply be a miscellaneous artifact. To conclude, in
this particular example, we would argue that the rule selection happens at log2(�w) = 2 is a better
decision, in which case the model makes a good compromise on exact consistency.

6 Discussion

Differences from (Group) Lasso In statistical learning, lasso [24] and its variants such as group
lasso are widely used for feature selection. However, unlike the standard regression setting where
(group) lasso was paired with least-squares, our group lasso based model differs in several ways. First,
while dropping features in a regression model can lead to an increased prediction error (under-fitting),
minimizing the number of rules, on the contrary, can facilitate a zero error, since a smaller rule
set creates a larger opportunity for consistency. Second, the simplex constraint can weaken the
selection power of group lasso: failures in group selection are observed for small �ws. This additional
constraint further makes a simple parameterization of the rules (one weight per rule instead of one
weight per rule component) and a simple lasso formulation inapplicable. However, the constraint
is inevitable since an unconstrained problem leads to a zero solution and a zero objective. These
differences pose new model behaviors and deserve more studies in our future work.

8

Local Convergence We solve the bi-convex problem (3) via alternating minimizations. The
algorithm decreases the non-negative objective in every iteration thus assures its convergence. Nev-
ertheless, neither a global optimum nor a convergence in solution can be guaranteed. The former
leaves the local convergence susceptible to different initializations, demanding further improvements
through techniques such as random start and noisy updates. The latter leaves the possibility for the
optimization variables to enter a limit cycle. However, we consider this as an advantage, especially in
music where one prefers multiple realizations and interpretations that are equally optimal.

More Microscopic Views The weighting scheme in this paper presents the rule selection problem
in a most general setting, where a different weight is assigned to every rule component. Hence, we
can study the relative importance not only between rules by the group norms kwgr

k2, but also within
every single rule. The former compares compositional rules in a macroscopic level, e.g. restricting to
a diatonic scale is more important than avoiding parallel octaves; while the latter in a microscopic
level, e.g. changing the probability mass within a diatonic scale creates variety in modes: think about
C major versus A minor. We can further study the rule system microscopically by sharing weights of
the same component but from different rules, yielding an overlapping group elastic net.

References

[1] K. Lewin, Field Theory in Social Science. Harpers, 1951.
[2] J. Skorstad, D. Gentner, and D. Medin, “Abstraction processes during concept learning: A

structural view,” in Proc. 10th Annu. Conf. Cognitive Sci. Soc., 1988, pp. 419–425.
[3] K. Haase, “Discovery systems: From AM to CYRANO,” MIT AI Lab Working Paper 293, 1987.
[4] A. M. Barry, Visual intelligence: Perception, image, and manipulation in visual communication.

SUNY Press, 1997.
[5] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspec-

tives,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798–1828, 2013.
[6] Y. Bengio, “Deep learning of representations: Looking forward,” in Proc. Int. Conf. Stat. Lang.

and Speech Process., 2013, pp. 1–37.
[7] J. J. Fux, Gradus ad Parnassum. Johann Peter van Ghelen, 1725.
[8] H. Schenker, Kontrapunkt. Universal-Edition A.G., 1922.
[9] H. Yu, L. R. Varshney, G. E. Garnett, and R. Kumar, “MUS-ROVER: A self-learning system for

musical compositional rules,” in Proc. 4th Int. Workshop Music. Metacreation (MUME 2016),
2016.

[10] ——, “Learning interpretable musical compositional rules and traces,” in Proc. 2016 ICML
Workshop Hum. Interpret. Mach. Learn. (WHI 2016), 2016.

[11] H. Yu and L. R. Varshney, “Towards deep interpretability (MUS-ROVER II): Learning hierar-
chical representations of tonal music,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR 2017),
2017.

[12] D. Cope, “An expert system for computer-assisted composition,” Comput. Music J., vol. 11,
no. 4, pp. 30–46, 1987.

[13] K. Ebcioğlu, “An expert system for harmonizing four-part chorales,” Comput. Music J., vol. 12,
no. 3, pp. 43–51, 1988.

[14] J. R. Pierce and M. E. Shannon, “Composing music by a stochastic process,” Bell Telephone
Laboratories, Technical Memorandum MM-49-150-29, Nov. 1949.

[15] H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” J. R. Stat. Soc.
Ser. B. Methodol., vol. 67, no. 2, pp. 301–320, 2005.

[16] J. Wang and J. Ye, “Two-layer feature reduction for sparse-group lasso via decomposition of
convex sets,” in Proc. 28th Annu. Conf. Neural Inf. Process. Syst. (NIPS), 2014, pp. 2132–2140.

[17] T. Hastie, J. Taylor, R. Tibshirani, G. Walther et al., “Forward stagewise regression and the
monotone lasso,” Electron. J. Stat., vol. 1, pp. 1–29, 2007.

[18] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani et al., “Least angle regression,” Ann. Stat.,
vol. 32, no. 2, pp. 407–499, 2004.

9

[19] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani, “Strong
rules for discarding predictors in lasso-type problems,” J. R. Stat. Soc. Ser. B. Methodol., vol. 74,
no. 2, pp. 245–266, 2012.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn., vol. 3,
no. 1, pp. 1–122, 2011.

[21] M. Yuan and Y. Lin, “Model selection and estimation in regression with grouped variables,” J.
R. Stat. Soc. Ser. B. Methodol., vol. 68, no. 1, pp. 49–67, 2006.

[22] W. Wang and M. A. Carreira-Perpinán, “Projection onto the probability simplex: An efficient
algorithm with a simple proof, and an application,” arXiv:1309.1541 [cs.LG], 2013.

[23] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating direction method of
multipliers,” Math. Program., pp. 1–35, 2012.

[24] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B.
Methodol., pp. 267–288, 1996.

10

