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Abstract—Shannon’s mutual information measures the degree
of mutual dependence between two random variables. Two
related information functionals have also been developed in the
literature: multiinformation, a multivariate extension of mutual
information; and lautum information, the Csiszár conjugate of
mutual information. In this work, we define illum informa-
tion, the multivariate extension of lautum information and the
Csiszár conjugate of multiinformation. We provide operational
interpretations of this functional, including in the problem of
independence testing of a set of random variables. Further, we
also provide informational characterizations of illum information
such as the data processing inequality and the chain rule for
distributions on tree-structured graphical models. Finally, as
illustrative examples, we compute the illum information for Ising
models and Gauss-Markov random fields.

I. INTRODUCTION

Shannon’s mutual information between any two random
variables X and Y , and more recently its Csiszár conjugate,
lautum information [1], have been defined respectively as:

I(X;Y ) = D(pX,Y ‖pXpY ), and (1)
L(X;Y ) = D(pXpY ‖pX,Y ). (2)

For any convex function f , the Csiszár f -divergence func-
tional [2] corresponding to any two discrete distributions
p = {p1, . . . , pm} and q = {q1, . . . , qm} is defined as

Df (p‖q) = Eq

[
f

(
p(X)

q(X)

)]
=

m∑

i=1

qif

(
pi
qi

)
. (3)

Let f∗(x) = xf
(
1
x

)
be a convex function. Then f∗ is the

Csiszár conjugate of the function f(x), and

Df∗(p‖q) = Df (q‖p), (4)

for any two distributions p and q.
Both mutual information and lautum information have sev-

eral operational and informational characterizations spanning a
variety of domains such as hypothesis testing, communication,
and image registration [1].

A natural multivariate extension of Shannon mutual infor-
mation, the multiinformation [3], is defined among random
variables Xn

1 as:

I(X1; . . . ;Xn) = D(PX1,...,Xn
‖PX1

PX2
· · ·PXn

). (5)

The multiinformation satisfies several operational and infor-
mational properties, as shown in diverse application areas
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such as psychology [4], [5], machine learning [3], [6], image
processing [7]–[9], cybernetics [10], [11], neuroscience [12],
and multiterminal communication [13]–[15].

The purpose of this paper is to provide some operational
characterizations and useful properties for an alternative mea-
sure of dependence where the roles of the joint and product-
of-marginal distributions are reversed. We define the illum
information1 among random variables Xn

1 as

L(X1;X2; . . . ;Xn) , D(PX1
PX2
· · ·PXn

‖PX1,X2,...,Xn
).
(6)

Illum information is the Csiszár conjugate of multiinformation,
just as lautum information is the Csiszár conjugate of Shannon
mutual information.

We also consider the sum of multiinformation and illum
information, which we refer to as sum information:

S(X1; . . . ;Xn) = I(X1; . . . ;Xn) + L(X1; . . . ;Xn). (7)

II. OPERATIONAL CHARACTERIZATIONS

In this section, we introduce a few settings where illum
information has operational significance.

A. Independence Testing

Consider the independence testing problem defined as
{
H0 : (X1, . . . , Xm) ∼ p
H1 : (X1, . . . , Xm) ∼ p1 ⊗ · · · ⊗ pm,

(8)

where pi is the marginal distribution of Xi corresponding
to p. That is, the null hypothesis corresponds to the case
where the components of the random vector are dependent,
drawn according to the joint distribution p. On the other
hand, the alternate hypothesis corresponds to the case where
the component Xi is drawn independently according to the
marginal distribution pi.

For ease, let Y = (X1, . . . , Xm), and let Y1, . . . , Yn drawn
independently and identically according to the underlying
hypothesis as defined by (8). Let

α = P [Decide {Y1, . . . , Yn} ∈ H1|H0] ,

β = P [Decide {Y1, . . . , Yn} ∈ H0|H1] .

1Illum (“that” in Latin) is the reverse spelling of multi, if we do not
cross our ts. We leave that, and working through the appropriate Radon-
Nikodym derivatives to the interested reader, especially since this paper is
largely restricted to discrete alphabets.



From [16], we have

d(α‖1− β) ≤ nI(X1; . . . ;Xm), (9)
d(β‖1− α) ≤ nL(X1; . . . ;Xm), (10)

where d(a‖b) = a log
(
a
b

)
+ (1− a) log

(
1−a
1−b

)
, a, b ∈ (0, 1).

It may be noted that (9) and (10) yield upper bounds on the
receiver operating characteristic (ROC) for the independence
testing problem.

Let L(X1; . . . ;Xm) and I(X1; . . . ;Xm) < ∞. In the
asymptotic setting, Stein’s lemma [17] gives an estimate of the
minimum error exponents. In particular, for the best hypothesis
test such that α < δ,

lim
n→∞

1

n
log(β) = −I(X1; . . . ;Xm), (11)

and similarly, for the best hypothesis test such that β < δ,

lim
n→∞

1

n
log(α) = −L(X1; . . . ;Xm). (12)

That is, we note that the Type I and Type II error exponents of
independence testing are given by the illum information and
multiinformation respectively.

In the Bayesian setting, let π0 and π1 = 1−π0 be the prior
probabilities of hypotheses H0 and H1 respectively. Then, the
log-likelihood ratio of samples Y1, . . . , Yn is

`n(Y1, . . . , Yn) = log

(
π1
π0

)
+

n∑

i=1

log

(
P [Yi|H1]

P [Yi|H0]

)
.

Then, from the law of large numbers, we have

1

n
`n(Y1, . . . , Yn)

a.s.→
{
I(X1; . . . ;Xm), if H0

−L(X1; . . . ;Xm), if H1

(13)

if the information values are finite.
Under the sequential testing framework, the sequential prob-

ability ratio test (SPRT) tracks the log-likelihood ratio which
is given by

Sn =

n∑

i=1

log
P [Yi|H1]

P [Yi|H0]
,

and declares one of {H0, H1} once the sum crosses an
appropriately chosen threshold. Let D be the mean drift of
Sn. Then,

D =

{
−I(X1; . . . ;Xm), if H0

L(X1; . . . ;Xm), if H1.

Consequently, Wald’s approximation indicates that the ex-
pected sample size, N , required for independence testing with
Type I and Type II error levels α and β, is given by

N ≈
{
d(α‖1− β)/I(X1; . . . ;Xm), if H0

d(β‖1− α)/L(X1; . . . ;Xm), if H1.

B. A Better Functional for Clustering?

Information-based clustering mechanisms have been defined
recently to separate random variables into clusters which have
minimal inter-cluster dependence [18]–[20]. These formula-
tions use multivariate information functionals such as parti-
tion information and multiinformation to perform clustering,
especially in universal settings. However, one practical issue
in implementing such algorithms is that these information
functionals are upper-bounded by entropy terms. In practice,
these quantities could potentially be arbitrarily small, thereby
making the clustering process very difficult.

However, we note that the illum information has no such
generic upper bound in terms of entropy. Let X ∼ p, where the
joint distribution p is a product over clusters in a partition P of
[n]. That is, p(X) =

∏
C∈P pC(XC). Then for any partition

P ′ = {C ′1, . . . , C ′|P ′|},

L(XC′1
; . . . ;XC′|P ′|

) ≥ 0, (14)

with equality if and only if P ′ � P .
For any partition P = {C1, . . . , C|P |}, define IP (X) =

I(XC1
; . . . ;XC|P |) and LP (X) = L(XC1

; . . . ;XC|P |). Then,
the correct clustering of the given set of random variables, P ∗,
minimizes IP (X)+LP (X) over all partitions P . Additionally,
due to non-negativity of the information functionals, it is easier
to resolve between two possible partitions.

Hence we claim that clustering using the sum information
functional may be more robust for universal clustering than
multiinformation or partition information.

III. INFORMATIONAL CHARACTERIZATIONS

Now we discuss some of the formal properties of illum
information.

A. Basic Properties

Since illum information is the multivariate extension of
lautum information and the Csiszár conjugate of multiinfor-
mation, several informational features extend naturally. Some
such properties are the following.

1) Non-negativity: L(X1; . . . ;Xn) ≥ 0 with equality if
and only if P [X1, . . . , Xn] =

∏n
i=1 P [Xi]. This follows

directly from the fact that illum information is a relative
entropy.

2) Monotonicity: For any n > m ≥ 2, L(X1; . . . ;Xn) ≥
L(X1; . . . ;Xm). This follows from the chain rule and
non-negativity of relative entropy as discussed later (19).

3) Data Processing Inequality: If X1 ↔ X2 ↔ · · · ↔ Xn

forms a Markov chain, then the data processing inequal-
ity of lautum information [1] extends to illum informa-
tion as L(X1; . . . ;Xn−1) ≥ L(X1; . . . ;Xn−2;Xn). The
data processing inequality also extends to tree-structured
Bayesian networks.

4) Convexity: Directly extending the results from [1], the
illum information is

a) a concave function of P [Xi] for any i ∈ [n], for a
given P

[
X\i|Xi

]
, and



b) a convex function of P
[
Xi|X\i

]
for any i ∈ [n],

for a given P
[
X\i
]
.

5) Invariance under bijection: Let f : Xn → Yn be a bi-
jective mapping and let (Y1, . . . , Yn) = f(X1, . . . , Xn).
The illum information is invariant to such bijective
transformations, i.e.,

L(X1, . . . , Xn) = L(Y1, . . . , Yn).

6) Lower and upper bounds: Let the variational information
for random variables X1, . . . , Xn be defined as

V (X1, . . . , Xn) = Df (pX1
. . . pXn

‖pX1,...,Xn
),

for the convex function f(x) = 1
2 |x−1|. Using Pinsker’s

[21] and reverse Pinsker’s [22] inequalities, the illum
information can be bounded in terms of the variational
information as

L(X1; . . . ;Xn) ≥ log2 e

2
V 2(X1, . . . , Xn), (15)

L(X1; . . . ;Xn) ≤ log2 e

pmin
V 2(X1, . . . , Xn), (16)

where pmin = minx1,...,xn
p(x1, . . . , xn), if pmin > 0.

B. Chain Rules

Not all informational characterizations of multiinformation
extend to illum information. In particular, mutiinformation
satisfies the chain rule given by

I(X1; . . . ;Xn) =

n∑

i=2

I(Xi−1;Xi). (17)

Let X be a random vector drawn according to a Bayesian
network where Ai is the set of parents of node i. Then, the
multiinformation decomposes as

I(X1; . . . ;Xn) =

n∑

i=1

I(Xi;XAi
).

In particular, if P = {C1, . . . , Ck} is a partition of [n], then

I(X1; . . . ;Xn) ≥ I(XC1
; . . . ;XCk

).

However, such decompositions do not necessarily hold
for the case of illum information. For instance, consider
(X,Y, Z) ∈ {0, 1}3 drawn as follows. Let X ∼ Bern(1/2),

Y ∼
{

Bern(ε), if X = 0

Bern(ε̄), if X = 1,
and Z ∼

{
Bern(ε), if X = Y

Bern(ε̄), if X 6= Y,

for ε̄ = 1− ε. Then, for ε < 1/2,

L(X;Y ;Z) > L(X;Y ) + L(X,Y ;Z).

On the other hand, for the distribution p given in the
following table,

(X,Y, Z) p(X,Y, Z) (X,Y, Z) p(X,Y, Z)
(0, 0, 0) 0.04 (1, 0, 0) 0.34
(0, 0, 1) 0.29 (1, 0, 1) 0.12
(0, 1, 0) 0.01 (1, 1, 0) 0.06
(0, 1, 1) 0.11 (1, 1, 1) 0.03

we get that

L(X;Y ;Z) < L(X;Y ) + L(X,Y ;Z).

In fact, L(X;Y ;Z) < L(X,Y ;Z), i.e., clustering random
variables does not necessarily decrease illum information as
it does for multiinformation. Hence in general, the illum
information does not satisfy a chain rule of the form of (17).

However, the chain rule does work for tree-structured
Bayesian networks. In particular, if the n-dimensional random
vector, X is distributed according to a tree-structured Bayesian
network such that the parent of node i is Ai, then

L(X1; . . . ;Xn) =

n∑

i=1

L(Xi;XAi). (18)

Let X ∼ p and let pi be the marginal distribution of Xi. Let
q(X) =

∏n
i=1 pi(Xi). Using the chain rule of relative entropy,

we have

L(X1; . . . ;Xn) =
n∑

i=2

D
(
pi(Xi)

∥∥p(Xi|Xi−1)
∣∣q(Xi−1)

)
.

(19)

C. Distribution Approximation
Analytically approximating (as opposed to sampling) a

target distribution is common in variational inference, where
the true yet intractable posterior is to be approximated by
a distribution that is easy to handle. This is typically done
by restricting the distributions under consideration to a class
that has certain properties, e.g. assuming that the class of
distributions factorize in a particular way or that they all
have a specific parametric form such as Gaussian. As a
consequence, the approximation problem reduces to finding
a distribution in the restricted class that best approximates the
target distribution, i.e., a projection of the target distribution
onto the restricted class.

Consider the problem of projecting a probability distribution
p onto a set S of probability distributions. We define the
projection of p onto the set S as the “closest” distribution
to p among all distributions in S, where “closeness” between
two distributions is measured in the following two ways.

PS(p) = arg min
p′∈S

D(p‖p′) (20)

P ′S(p) = arg min
p′∈S

D(p′‖p) (21)

where we have taken the two forms of relative entropy. In
general, PS(p) 6= P ′S(p), due to the asymmetry of relative
entropy. However it is trivial to see that for any p ∈ S, we
have PS(p) = P ′S(p) = p, which shows that both PS(·) and
P ′S(·) are indeed projections (idempotent).

Now we consider a special class of distributions, which
all factorize over a given directed acyclic graph (Bayesian
network). Formally, let G be a Bayesian network over random
variables X1, . . . , Xn, and SG be the set of distributions that
factorize over G, then one can show that

PSG
(p) =

∏

i

pi|Ai
,
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Fig. 1. Project a distribution p onto SG and SG0
, respectively. Note that:

Gp ⊃ G ⊃ G0, in which the numbers of independence conditions are getting
larger and larger.

where inferred from p, pi|Ai
is the conditional distribution

of Xi given its parents in G. In an extreme case, let G0

be the Bayesian network containing no edges (every node is
independent of the others), then

PSG0
(p) =

∏

i

pi,

i.e. the product of marginals.
In addition, one can show that,

I(X1; . . . ;Xn) = D
(
p‖PSG0

(p)
)

(22)

= D (p‖PSG
(p)) +

n∑

i=1

I(Xi;XAi
), (23)

where Ai denotes the parents of Xi in G. Note that both terms
in (23) are nonnegative, which implies that I(X1; . . . ;Xn) ≥
D (p‖PSG

(p)), where equality holds if and only if G = G0;
and I(X1; . . . ;Xn) ≥ ∑n

i=1 I(Xi;XAi), where equality
holds if and only if p ∈ SG. This additive projection property
of multiinformation is depicted in Figure 1.

On the other hand, such projection properties do not hold for
illum information, when the other projection operator P ′S(·)
is adopted. To see this, let us consider the specific example of
projecting a distribution onto the set of distributions that are
product-of-marginals, i.e. the mean-field approximation of a
distribution into the product distribution. Specifically, let SG0

be the set of all distributions of the form q(X) =
∏n

i=1 qi(Xi).
Then, the mean-field approximation,

q? = P ′SG0
(p) = arg min

q∈SG0

D(q‖p), (24)

is given by the recursive formulation:

q?i (xi) = exp
(
Eq?

[
log p(Xi−1, xi, X

n
i+1)

]
− λi

)
, (25)

where λi is the log-partition function.

IV. EXAMPLES

In this section, we provide some exemplary computations
of illum information.

A. Exponential Family

Consider an n-dimensional exponential family of distribu-
tions, {pθ,θ ∈ Rn}, of the form

pθ(X) = h(X) exp
{
θTT (X)−A(θ)

}
, X ∈ Xn, (26)

where θ is the vector of parameters, T : Xn → Rn is the
function of sufficient statistics, h : Xn → R, and A(θ) is
the log-partition function. Let X ∼ pθ be the n-dimensional
random vector X = (X1, . . . , Xn). Let pi(·) be the marginal
distribution of Xi and q(X) =

∏
i∈[n] pi(Xi).

The multiinformation of pθ is given by

I(X1; . . . ;Xn) =

n∑

i=1

H(Xi)−A(θ)

− Epθ
[log h(X)] + θT∇A(θ), (27)

where∇A(θ) is the gradient of the log-partition function. This
follows from the fact that Epθ

[T (X)] = ∇A(θ).
On the other hand, the illum information is given by

L(X1; . . . ;Xn) = A(θ)−
n∑

i=1

H(Xi)

+ Eq [log h(X)]− θTEq [T (X)] . (28)

Consequently, we note that the sum information

I(X) + L(X) = θT [∇A(θ)− Eq [T (X)]]

+ [Eq [log h(X)]− Epθ
[log h(X)]] . (29)

In particular, consider an n-dimensional jointly Gaussian
random vector, X ∼ N (0,Σ). Consider the eigendecomposi-
tion of the covariance matrix as

Σ =
n∑

i=1

λiuiu
T
i ,

where {λi, i ∈ [n]} are the eigenvalues and {ui, i ∈ [n]} are
the corresponding orthonormal eigenvectors. Without loss of
generality, let λi > 0 for all i. Then,

I(X1; . . . ;Xn) =
1

2

n∑

i=1

log

(
σ2
i

λi

)
, (30)

L(X1; . . . ;Xn) =
1

2

n∑

i=1

[
uTi Σ̂ui
λi

− log

(
σ2
i

λi

)
− 1

]
, (31)

where Σ̂ is the diagonal matrix of variance values.
Let Yi = Xi/σi and let Σ̃ be the covariance matrix of

the normalized Gaussian random variables such that Σ̃ =∑n
i=1 λ̃iũiũ

T
i is the orthonormal eigendecomposition. Since



information is invariant to bijective transformations, we have
L(X) = L(Y) and I(X) = I(Y), where

I(Y1; . . . ;Yn) =
1

2

n∑

i=1

log

(
1

λ̃i

)
, (32)

L(Y1; . . . ;Yn) =
1

2

n∑

i=1

[
1

λ̃i
− log

(
1

λ̃i

)
− 1

]
, (33)

I(Y) + L(Y) =
1

2

n∑

i=1

[
1

λ̃i
− 1

]
, (34)

L(Y)− I(Y) =

n∑

i=1

1

2λ̃i
− 1

2
− log

(
1

λ̃i

)
. (35)

For n = 2, L(X) ≥ I(X) [1]. However the result does not
extend for n > 2. For instance, consider the 3-dimensional
jointly Gaussian vector with covariance matrix

Σ =




1 0.25 0.25
0.25 1 −0.25
0.25 −0.25 1


 . (36)

Then, L(X)− I(X) = −0.0032.

B. Pairwise Markov Random Fields

Consider an undirected graph G = (V,E) and the pairwise
Markov random field (MRF) defined on G, parametrized by
the node potential functions {ψi(·), i ∈ V } and edge potential
functions {ψij(·), (i, j) ∈ E}, given by

pG(X) = exp


∑

i∈V
ψi(Xi) +

∑

(i,j)∈E
ψij(Xi, Xj)−A(ψ)


 ,

(37)
where A(ψ) is the log-partition function. Again, let pi be the
marginal distribution of Xi and q(X) =

∏
i∈V pi(Xi).

Then, we have

L(X) = A(ψ)−
∑

i∈V
H(Xi)−

∑

i∈V
E [ψi(Xi)]

−
∑

(i,j)∈E
Eq [ψij(Xi, Xj)] , (38)

I(X) =
∑

i∈V
H(Xi)−A(ψ) +

∑

i∈V
E [ψi(Xi)]

+
∑

(i,j)∈E
EpG

[ψij(Xi, Xj)] . (39)

This in turn indicates that the sum information

L(X)+I(X) =
∑

(i,j)∈E
EpG

[ψij(Xi, Xj)]−Eq [ψij(Xi, Xj)] ,

(40)
which is equivalent to the cumulative potential difference
across edges owing to independence. Note that the sum
information is independent of node potentials and the partition
function. This indicates that the “effective information” or the
symmetric distance from independence is quantified entirely
by the edge effects of the MRF. Additionally it may be noted

that this sum information may be estimated easily from data,
given the edge potentials.

In particular, let us consider the Ising model defined on
a graph G = (V,E), with parameter set {θi, i ∈ V } ∪
{θij , (i, j) ∈ E}. For an Ising model, X ∈ {−1,+1}|V | and
the potentials are defined as

ψi(Xi) = θiXi, and ψij(Xi, Xj) = θijXiXj .

Let the log-partition function be A(θ).
Then,

L(X) = A(θ)−
∑

i∈V

(
H(Xi) + θiX̄i

)
−

∑

(i,j)∈E
θijX̄iX̄j ,

(41)

I(X) =
∑

i∈V

(
H(Xi) + θiX̄i

)
−A(θ) +

∑

(i,j)∈E
θijE [XiXj ] .

(42)

It may be noted here that the information functionals depend
only on the mean and entropy of the nodes, and the correlation
across the edges. In particular,

L(X) + I(X) =
∑

(i,j)∈E
θijCij , (43)

where Cij = E
[
(Xi − X̄i)(Xj − X̄j)

]
is the covariance

corresponding to edge (i, j). This indicates that the sum in-
formation is effectively the sum of edge covariances weighted
by the edge potential parameters. Using the Cauchy-Schwarz
inequality and the non-negativity of multiinformation, we note
that for generic Ising models,

L(X) ≤
∑

(i,j)∈E
θijσiσj ≤

∑

(i,j)∈E
θij , (44)

where σ2
i is the variance of Xi. That is, the illum information

is bounded in terms of the variance values for Ising models,
and more loosely by just the edge potential weights. Note that
this upper bound holds for the multiinformation as well.

In addition, result (40), suggests a simple thought experi-
ment. Let the graph G = (V,E) represent a network of friends
who are out to vote for a dinner restaurant from a list X . Let
us additionally assume that the self choice is reflected in node
potentials {ψi(·), i ∈ V }, and that homophily additionally
increases the likelihood of similar responses among friends
through edge potentials {ψij(·), (i, j) ∈ E} of the form

ψij(Xi, Xj) = 1 {Xi = Xj}, for all (i, j) ∈ E,
where 1 {·} is the indicator function.

Friendships are strained when any two friends vote for
different restaurants. To this end, a fair cost function to
consider would be the cumulative strain reflected by

C(X) =
∑

(i,j)∈E
1 {Xi 6= Xj}.

From (40) and the non-negativity of information, we observe
that

EpG
[C(X)] ≤ Eq [C(X)] , (45)



which indicates that the effective strain on a social group that
colludes in taking a decision is less than the strain on a group
with matching marginals, but that answers independently. This
indicates the need for discussion in a social group to achieve
cohesive decision-making.

V. CONCLUSION

In this paper, we defined illum information, the multivariate
extension of lautum information and showed that it is the
Csiszár conjugate of multiinformation. We gave some oper-
ational and informational characterizations of this functional,
and also highlighted settings such as density estimation and
the chain rule where the illum information differs from the
multiinformation. Finally we computed the illum information
and sum information for some examples such as pairwise
Markov random fields and exponential distributions.
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