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Abstract—GPUs are capable of running a variety of appli-
cations, however their generic parallel-architecture can lead to
inefficient use of resources and reduced power efficiency, due
to algorithmic or architectural constraints. In this work, taking
inspiration from CGRAs (coarse-grained reconfigurable archi-
tectures), we demonstrate resource sharing and re-distribution
as a solution that can be leveraged by reconfiguring the GPU on
a kernel-by-Kkernel basis. We explore four different schemes that
trade the number of active SMs (streaming multiprocessor) for
increased occupancy and local memory resources per SM and
demonstrate improved power and energy with limited impact to
performance. Our most aggressive scheme, BigSM, is capable
of saving energy by up to 54%, and 26% on an average.
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I. INTRODUCTION

The use of GPUs for general purpose computing
(GPGPU) has emerged as a dominant paradigm that allows
programmers to exploit massively parallel architectures, with
relatively simple programming models. The pervasiveness of
GPGPU is, in part, due to the generic parallel architecture of
the GPU which allows it to run applications from a variety of
domains. However, this one size fits all architecture makes
efficient utilization of resources difficult and can result in
lost computational power and reduced energy efficiency.

In contrast, reconfigurable architectures, such as CGRAs
(coarse-grained reconfigurable architectures), have shown
promise as highly efficient accelerator platforms [1]. They
offer a smaller design space and simpler programming
models than FPGAs (field programmable gate arrays), while
still being able to create a customized datapath based on the
target application or algorithm. As such, they potentially of-
fer a middle ground between customization and programma-
bility, but are constrained by their custom compilation flows
and can not provide the simple programming model and
flexibility of a GPU.

In this work, we take inspiration from CGRAs and pro-
pose the merging and sharing of resources amongst GPU
cores (SMs) to better suit an application’s need. Rather than
allowing GPU SMs to run idle or with limited throughput,
we propose shutting down SMs and re-distributing their
resources to neighboring SMs. In doing so, we attempt to
minimize the amount of power wasted, while limiting the
impact to throughput.
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In the past, coarse-grained reconfiguration of cores, [2]
[3], has attempted to trade-off single-thread and multi-
threaded performance. However, in this work we focus
on targeting inefficient execution and improving energy
efficiency by leveraging the GPU’s latency hiding properties.
We do so on a kernel-by-kernel basis and without the need
for any ISA extensions or compiler modifications or any
specialized CAD tools.

We summarize our contributions as:

« We explore the inefficiencies in GPGPU and show the

unique requirements of individual kernels.

o Inspired by CGRAs, we propose inter-SM resource

sharing and introduce four schemes to exploit it.

o« We discuss the micro-architectural changes required

within the SMs, along with their overheads.

o Our most aggressive scheme, BigSM, demonstrates up

to 54% saving in energy, and an average of 26%.

The rest of the paper is organized as follows. In Sec. II we
introduce our baseline GPU architecture and go on to moti-
vate the problem in Sec. III. We then present our proposed
solution in Sec. IV and define its micro-architecture in Sec.
V. In Sec. VI we present our experimental evaluation, and
follow it up with a discussion on CGRAs and related works
in Sec. VII before concluding in Sec. VIIIL.

II. GPU ARCHITECTURE

We consider a generic GPU model that consists of several
streaming multiprocessors or SMs, along with a unified L2
cache. The SMs are interconnected to each other and the
L2 cache via an on-chip interconnect. Fig. 1 illustrates the
micro-architecture of the SM modeled and used in this work
[4]. The SM manages threads in groups called warps. These
warps are created, managed, and scheduled by the SM. By
having a large number of warps in flight, the SM is able
to mask the latency of memory access by swapping warps
in and out of the pipeline, overlapping the execution of
threads with memory accesses. This is done by maintaining
the context of a warp on the SM. In order to do so, the SM
features a large instruction buffer, multiple program counters
(PC) and re-convergence stacks. Fetch, decode and issue are
part of the scalar front end, such that instructions are fetched
on a per-warp basis and stored in the instruction buffer after
being decoded, while issuing of instructions is done in-order
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elements and simple control logic [1]. However, GPUs
have well defined programming models, high bandwidth
off-chip memory, complex memory hierarchies, and are not
constrained to any particular domain.

III. INEFFICIENCIES IN GPGPU

In order to motivate the problem and to demonstrate the
uniqueness of kernels, in this section we study a set of appli-
cations from the Rodinia [5] and Parboil [6] benchmark sets,
listed in Table I. Our baseline SM and GPU configuration
is described in Table II.

First, we analyze the number of registers needed per
thread (REG), the amount of shared memory (SH MEM)
needed per CTA (cooperative thread array or thread block),
and the max number of warps per SM (THREAD) to
determine the maximum number of warps (threads) that can
concurrently reside on an SM i.e. occupancy. We present
a summary of the benchmarks utilized, and list out the
resource that constraints each kernel in Table I. From this
static analysis, we observe how kernel requirements vary
based on just three parameters: shared memory, registers,
threads per SM. In addition, each kernel can be consid-
ered as compute or memory bound [7] [8], and may be
constrained by algorithmic factors such as non-coalesced
memory accesses and control divergence. We then further
analyze the dynamic performance of the kernels, Fig. 2.
First, we examine the throughput of each SM via IPC,

Fig. 2(a). It is evident that several kernels are not utilizing
the GPU’s full potential. In fact, out of the 33 kernels
represented, only 10 kernels achieve an IPC greater than
50% of the theoretical peak, while only 17 kernels crossed
the 25% mark.

Fig. 2(b) and Fig. 2(c) show pipeline activity and power
via box-plots that describe their variation across time in
a statistical fashion. The target (circle with a dot in the
middle) indicates the median value, while the edges of the
box are the first and third quartiles of the data. Note that
pipeline duty cycle is measured as the ratio of committed
number of instructions to the maximum peak of committed

Table II
ARCHITECTURE PARAMETERS USED FOR SIMULATION

Per Configuration SM Resource

Resource [[ Baseline | Occ. [ Bal. | Big SM [ Big SM_Occ.
#SM 12 6 8 6 6
Warp Size 32 32 32 64 64
#Warps 24 48 36 24 48
#Reg 16K 32K | 24K 32K 32K
#Reg Banks 16 32 24 32 32
Sh Mem 16K 32K | 24K 32K 32K
Sh Mem Banks 16 32 24 32 32
L1 D$ 16K 32K | 24K 32K 32K
#Op Coll 16 32 24 16 16
[ GPU Resources |
L2 D$ | #Mem Cntrl | Max #CTA Per SM | Core Clock
256K 4 8 700MHz
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Figure 2. Kernel execution profiles.
instructions [9]. It provides us with an insight into how

much work is being done by the SM pipeline and is useful
in quantifying the effect of stalls and idling on execution
performance. A higher value indicates a more efficient usage
of the core pipeline resources. From the plots we note
that kernels within an application can demonstrate vastly
different characteristics which can cause applications to
appear to have variations across time in phases. However,
these phases are aligned with different kernels within an
application.

IV. COARSE GRAINED GPU RECONFIGURATION

Following our analysis in Sec. III, we consider shutting
down half of the SMs as a first order solution to conserve
power. In Fig. 3, we see that several kernels maintain the
same [PC despite having half the number of execution units
available. In fact, these kernels also showed poor IPC in our
baseline analysis (Fig. 2). Thus, we make two observations:
(1) Kernels in an application may have unique character-
istics and resource constraints; (2) Increased computational
resources may not provide improved throughput.

We propose a solution to address these inefficiencies in
GPU computing - configure the GPU to suit the charac-

Figure 3. Kernel performance and power with half the SMs active, relative
to the baseline configuration.

teristics and requirements of the kernel prior to launching
the kernel. Unlike CGRAs, we will not rely on any modi-
fications to the existing code or any compiler optimization.
Instead, we rely on merging and re-distributing three types of
resources: (1) Thread context management, i.e. instruction-
buffers, convergence stacks, PC stacks; (2) On-chip memory
i.e. register banks, caches and shared memory; (3) SIMD
execution units. Using a combination of these three pa-
rameters we present four schemes - Occ, Bal, BigSM and
BigSM_Occ. Note that since each SM is very large, we limit
the sharing of resources to neighboring SMs only.

A. Increasing Occupancy

In Sec. III, we noted two possible causes of inefficient
execution - memory latency and resource limitation. Since
computation is not the bottleneck, we propose turning-off
half the SMs on the GPU, and make their thread manage-
ment resources available to the neighboring SM, thereby
doubling it’s occupancy and improving latency tolerance.
In addition, to support the expanded context, we propose
merging the register files as well as the shared memory and
L1 data cache if needed. This configuration is of particular
significance to memory bound applications. Table II includes
the details of this configuration (Occ.) and is illustrated in
Fig. 4(a).

B. Balanced Redistribution

We also explore a more conservative approach. Rather
than shutting down half the SMs, we shutdown only one-
third, and distribute the context management and on-chip
resources equally across the remaining SMs. Thus, we main-
tain two-thirds of the compute units active, while increasing
the resident warps, registers and cache size by 50%. This
balanced (Bal.) scheme is shown in Fig. 4(c) and detailed
in Table II.

C. SIMD Expansion

Our most aggressive scheme proposes the merging of
SIMD execution resources along with the increased context
and memory. In doing so, we double the warp size which
can potentially improve memory sub-system behavior. Since
the SM manages work at the warp-level, by doubling the
number of warps per SM and the size of each warp, the
total number of threads per SM (occupancy) increases by



a factor of 4. This, however, can lead to contention which
may diminish the effect of improved occupancy. Thus, we
explore two versions of this configuration: (1) BigSM, which
only expands the warp size and (2) BigSM_Occ., which
expands the warp size and the number of resident warps.
This configuration is shown in Fig. 4(b) and detailed in Table
II (BigSM).
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Figure 4. Configuration schemes.

Fig. 4 shows a high level overview of our schemes for
a given pair or trio of neighboring SMs. The grey shaded
SM is inactive in the given group, and has some of it’s
units turned off (orange shaded). The SM which is active,
borrows resources from its inactive neighbor, and merges
them with its own (blue shaded units). Other components
in the active SM remained unchanged (green shaded units).
An SM is considered turned off or inactive, when no warps
are resident and executing on it’s front end. The turned-off
units are considered to be power-gated.

V. MICRO-ARCHITECTURE OF A FLEXIBLE SM

In order to enable flexible configuration of the GPU’s
SMs, global control structures as well as the SM must
be redesigned. We introduce modifications such that the
baseline performance is maintained, while the area and
power overheads of the additional structures are minimal.
In our discussion, we call an SM whose front-end is active
and using resources from a neighboring SM, the Active
SM, while the SM whose front-end is disabled and whose
resources are being utilized by another SM, is called the
Inactive SM.

A. Dummy Pipelining and Data Movement

Reading and writing from data structures across SM
boundaries may not be feasible within a single cycle due
to wire delay. For an SM reading operands from local and
remote structures, this can create an imbalance in operand
latencies. Rather than introducing complex control logic,

we propose dummy pipelining, whereby we add dummy
pipeline stages to local accesses. While this deepens the
pipeline, and potentially increases instruction latency, GPUs
are throughput oriented architectures and are designed to
tolerate latencies. Fig. 5 illustrates the idea of dummy
pipelining. Note that the dummy nomenclature refers to the
two stages added between A and B, as they do not improve
the timing characteristics and only balance the two paths.
Additionally, a bypass path, that bypasses the dummy stages,
can be used to revert to the baseline pipeline timing, should
a kernel be better suited to the baseline architecture than our
schemes.

1ns 3ns ins
|:> Bypass

Figure 5.
For the rest of this discussion we will rely on dummy
pipelining being implemented with the help of two elements:
(1) Boundary buffers, placed at the edge of the SM to
facilitate data movement across SM boundaries. (2) wire
links, such as those demonstrated in [10] that enable low
latency communication of small data packets and signals
across cores. This is in contrast with CGRAs that rely
on uniform routing networks between processing elements
(PEs).

B. Enabling SM Resource Sharing

GPUs employ a global scheduling engine to assign CTAs
from a kernel to each SM. In our architecture, we assume
that a hardware register informs the scheduler how many
SMs are available. At kernel launch, configuration bits are
passed when the work queues are pushed to the GPU. These
configuration bits set which SMs are the Active SMs and
set the appropriate shared resource mode bits for each SM.
When a CTA is scheduled to an SM, the SM is provided
with configuration bits to enable/disable resource sharing.
Thus, scheduling of CTAs is still handled by the hardware
and does not require additional driver or compiler assistance,
apart from providing configuration bits.

1) Front End: In our proposed architecture, we begin by
partitioning the instruction buffer and convergence stacks
into two banks, such that two concurrent reads may be done
from two different banks. When an SM is in shared resource
mode and is an inactive sm, then a copy of the top entry
from the convergence stack is made available in a boundary
buffer (Sec. V-A). By doing so, the scheduler of the active
SM has fast access to it. If the inactive SM’s resources are
shared by two active SMs (Bal. config), then the two banks
of the instruction buffer and the convergence stacks are used

Dummy Pipelining.



independently, with one bank being allocated to one active
SM. Else, both banks can be used as a single structure by
either the SM they are local to, or by one active SM only
(Occ or BigSM configs).

Next, we propose adding two bits to each instruction
buffer, so that they can hold the valid and ready bits for
an additional warp, instead of just one warp. The active
SM can then perform scheduling and scoreboarding without
having to cross the SM boundary. However the scheduler and
scoreboard logic needs to be able to handle twice as many
warps. Finally, upon completing decode, the instructions
need to be placed in the instruction buffer which may be
in the inactive sm. By using the boundary buffers and
dummy pipelining, we can tolerate the additional latency
by pipelining the decode unit.

2) Datapath: The datapath is comprised of a register
file, operand collectors and SIMD execution units. When
modifying the datapath, our goal is to limit data movement
between SMs and avoiding complex wiring and crossbar
structures.

The register file is banked and capable of servicing re-
quests to all banks simultaneously. Thus, we propose sharing
of the register file on a bank-level, by assigning either half or
all the banks to active SMs. However, operands are buffered
in operand collectors before dispatch, which makes sourcing
operands across SM boundaries prohibitively expensive.
Instead, we propose a change in allocation policy, such that
all warp operands, which may be in different register banks,
and their operand collector are always in the same physical
SM, thereby eliminating the need for a complex cross-SM
crossbar. Since register indexing is done based on its index,
we cannot ensure that all operand of a warp will be on the
same SM without renaming logic or compiler support. So,
we also modify the register indexing policy and constrain
warps with indices higher than that of the baseline to use
registers from the inactive SMs.

In the case of SIMD expansion (BigSM), wider warps
require twice as many operands to feed the execution units.
However, each register bank entry and each operand collec-
tor entry, is designed to hold operands for the standard warp
size only. To tackle this, we mirror the register and operand
requests across the two SMs, such that registers and operand
collectors on each SM provide operands for half of the wide
warp, giving the appearance of twice as many registers per
cycle but the same number of register file banks and the
same number of operand collectors. Upon execution, SIMD
units are fed by operand collectors local to the SM.

In the case of Occ. and Bal. schemes, operand dispatch
may require moving data across SMs. Again, we leverage
dummy pipelining to transport data across SMs via boundary
buffers. Thus, the operand dispatch is now pipelined. The
first stage reads the operand to be issued, and places copies
in the boundary buffers, while the second stage selects
operands either from local collectors or from neighboring

SMs via the boundary flops.

3) Memory Pipeline: The LDST unit operates as an
independent memory pipeline and includes coalesce logic,
memory request queues, address generation unit (AGU) and
the network interface to the global interconnect. Sharing or
merging these resources is not feasible due to their size
and complexity. Thus, the external memory bandwidth per
SM remains the same across all four schemes. In our four
schemes, we provide for increased cache and shared memory
capacity while relying on the active SM’s LDST unit. Since
shared memory is implemented as a multi-banked structure,
where each bank can be independently accessed, we provide
increased shared memory to the active SM by allocating
shared memory banks from an inactive SM by mapping the
additional banks to higher indexed memory addresses. The
active SM’s LDST unit is still responsible for generating the
requests.

However, sharing cache resources is not straightforward.
In order to share the cache, the tag arrays of a single way can
be partitioned into two banks such that it can now service
twice as many requests. When operating in the baseline
configuration, the MSB of the address can be used to
determine which bank the tag belongs to and local requests
can be serviced. When operating in the shared mode, each
bank of the tag array is dedicated to a remote SM. A
selector bit, informs the tag lookup-logic that two external
and independent requests must be serviced, which in turn
ensures that the appropriate address is routed to the correct
bank. If the entire cache is allocated to the neighboring SM
(Occ. and BigSM), then the cache can operate as normal
but services remote requests only. Assuming that cache
accesses are multi-cycle operations, the next stage after tag
comparison involves reading/writing into the selected set.
Once again, in order to support the sharing of the cache, the
data array is also banked to support two different requests.
Once data is read, it is buffered in the boundary buffers, to
assist in moving the cache line to the neighboring SM. Since
requests to the remote memory banks will have a higher
latency, we again leverage dummy pipelining and increases
the overall latency of the LDST unit for shared memory and
L1 cache accesses.

As in the case of the front-end and datapath, when
operating in the default configuration, the memory pipeline
maintains its original timing while the operating clock
frequency is unchanged across all configurations.

4) Synchronization and Coherence: CTA-wide synchro-
nizations are handled by the SM on which the CTA is
resident and are handled by the front-end units only. In our
proposed architecture, warp management is handled by the
active SM’s, hence we do not need additional mechanisms
for CTA-wide synchronization. In addition, the register file,
shared memory and L1 data cache resources are partitioned
and allocated exclusively to an active SM, such that any
given bank is never actively shared by two SMs simultane-



ously, which mitigates coherence issues. Finally, we perform
configuration changes on a kernel-by-kernel basis, and since
register and shared memory allocations are not valid across
kernel launches, we do not need to introduce any additional
flushing sequences.

VI. EVALUATION

Table IIT
STATIC POWER BREAKDOWN PER SM
Unit | Leakage Power (W) |

Front-end 0.06783
Reg File 0.228586
SIMD 0.038
LDST 0.911
Undiff 1.571
L1D$, Sh Mem 0.86
Tex, Const $ 0.86
Additional Wiring 0.0385416

A. Overhead Analysis

In order to estimate the area overhead of the modifications
to the GPU, we use a combination of RTL synthesized
models and estimates from Cacti [11]. First, we characterize
the wiring overhead via Cacti [11] wire models, similar to
[12]. We estimate the area of an SM, via GPUSimPow [13],
to be 12.93mm? in a 40nm technology, and thus its length
is approximately 3.6mm, which we use as the maximum
distance data must be moved between two SMs. Since global
wires are power hungry and have limited availability we
use low swing wires. Low swing wires do not swing to
full VDD, hence they consume less power, but are slower
and need area consuming repeaters [11]. Using Cacti, we
estimate the wire delay to be 0.73ns for 3.6mm, which
allows data transfer to be completed in a single cycle, with
a 700MHz clock frequency. However, since our design uses
boundary buffers as an intermediary, data must move only
1.8mm, which would require 0.315ns. Thus, the dummy
pipelining overhead is a single cycle. Then, using a 45nm
library and Synopsys Design Compiler, we estimate an
85% overhead to the issue unit, due to the pipelining,
which accounts for 0.064um? per SM. Additionally, we
characterize the overhead of the boundary buffers and muxes
as 0.0887um?, per SM. Finally, we estimate the total cost
of the wiring assuming no overlap over logic, as done in
[3], to be 4.71mm? per pair of SMs, and the total leakage
power of the wiring is 0.077W, per SM pair. The total area
of a 16SM GTX580 GPU is 520mm?2 [13], in which case
the wiring accounts for a 7.24% area overhead.

B. Evaluation Setup

In this work, we use a cycle accurate simulator, GPGPU-
Sim [4]. We model our GPU, based on the specs shown in
Table II and modified it to reflect the pipeline timing and
resource allocation policies discussed in Sec.IV. In order
to estimate power, we use GPUWattch [9] to determine the
dynamic power, and we use values provided by GPUsimPow
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Figure 6. Experimental results, normalized to baseline configuration
[13] for detailed breakdown of static power. We also include
the overhead of the wiring (Sec. VI-A), and use Cacti to
calculate the leakage power for a unified L1D cache and
share memory, as well as the texture and constant caches.

C. Evaluation Results

Fig. 6 presents the results of our evaluation, normalized to
the baseline configuration (Table II). The power data shown
includes the static power for each configuration, based on
the data in Table III, and energy is computed as the power-
delay-product.

1) Experimenting with Occupancy: As outlined in Sec.
IV, the configurations - Occ. and Bal., attempt to im-
prove resource utilization by increasing occupancy, per-SM
resources and save power by shutting down other leaky
components that are not needed. Consider the kernels that
exhibited very poor performance on the baseline GPU, such
as BFSP, MRI2, GAUS1 and KM2. With the occupancy op-
timized scheme, they demonstrate less than 5% performance
degradation. However, by shutting down wasteful units, we
reduce the power consumption of these units by 33% to



14%, and thus provide 33% to 12% energy reduction across
the Bal. and Occ. schemes. An interesting case is that of the
register constrained CFD2 kernel which actually shows 20%
increase in performance on Occ, but not on Bal. This is an
artifact of our register allocation policy, where the remote
SM’s registers are available only to the additional warps
(Sec. V-B2). Overall, the Occ. scheme shows an average of
15% reduction to IPC, while Bal. shows an average IPC
reduction of 9%. However, this average includes compute
intensive kernels, whose performance is expected to fall in
these schemes. If we focus on kernels that do not degrade
severely in performance, the Occ. scheme is able to provide
up to 57.5% reduction in energy, with an average of 20%.
On the other hand, the Bal scheme provides up to 27.5%
reduction in energy, with an average of 14% only.

2) Warp Size Expansion: The results in Fig. 6 show
promise for the BigSM configuration. Note that in BigSM,
since the number of LDST units is halved, each SM now
has to service twice as many threads in a warp, which
can cause contention on the network and the memory. This
is where increasing the occupancy along with widening
the warp size (BigSM_Occ.) can be leveraged. Fig. 7,
shows the relative IPC and energy of BigSM_Occ, over
BigSM. Consider the compute bound kernels which per-
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Figure 7. IPC and energy of BigSM_Occ. relative to BigSM

formed poorly on Occ. - CUTCP, MRI1, SGEMM, BP2,
HS, KM1, PATH and SRADS5. On BigSM, they exhibit
significantly better performance, relative to Occ. However,
the impact of increasing occupancy along with SIMD width
is minimal, as seen by the results of BigSM_Occ. In Sec.
IV, we noted that increasing the warp size and the number
of concurrent warps would quadruple occupancy. However,
in our experiments, this increased occupancy was hard to
saturate by the workloads, since the number of CTAs per
SM did not change. Increasing the number of CTAs per SM
is not trivial and would require modifying the global and
local schedulers. An outlier to this is the BFSR2 kernel. The
BFSR2 demonstrates a high IPC, however upon inspection,
we see that it is primarily comprised of writes to global
memory, with no compute. Hence it is able to leverage the
wider warp execution, as well as the increased occupancy
provided by BigSM_Occ.

As expected, BigSM performs well with compute inten-
sive kernels, and is able to minimize the performance degra-
dation when shutting down SMs. Additionally, occupancy
limited kernels (Table I) such as those in BFSR and SRAD,
show increased IPC due to the increase in available threads

and registers. As we saw for the Occ. scheme, CFD?2 is able
to achieve over 20% speedup from the increase in registers
in BigSM too. Overall, BigSM and BigSM_Occ demonstrate
5.8% and 8.6% increase in IPC across all kernels, and have
a maximum IPC increase of 54% and 57% respectively
(excluding BFSR2, which shows upto 100% increase in IPC
for BigSM_Occ). When the power savings are taken into
account, BigSM shows an average of 26% improvement in
energy, and up to 54% energy reduction.

3) Choosing The Best Configuration: From our analysis
and results, we can conclude that for memory bound kernels,
the Occ. scheme is best suited. While, BigSM can provide
similar performance, the additional write-back and data
movement penalty is not justified. On the other hand, for
compute bound problems, BigSM has been shown to provide
the best energy efficiency and performance. In the case of
where the kernels are constrained by resources, such as
registers or shared memory, the decision must be made based
on whether it requires additional occupancy and whether it
is compute intensive or not.

VII. CGRAS AND RELATED WORKS

When compared to GPUs, the custom CAD and com-
pilation flow of CGRAs puts them at a disadvantage, de-
spite their efficient customizable datapaths. In this work we
have attempted to bridge this gap. Due to the difference
in workloads, benchmarks, and evaluation methodologies,
it is hard to perform a one-to-one comparison between
CGRASs and our architecture. Instead, we use performance-
per-watt (GFLOPS/W) for matrix multiplication as a relative
comparison point of efficiency, and consider two works [14]
[15]. [14] demonstrated 23.48 GLFOPS/W for SGEMM and
we calculated the efficiency of [15] as 10.11 GFLOPS/W.
In contrast, we measured 1.76 GFLOPS/W on our baseline
GPU model, which was based on the Nvidia 45nm Fermi
architecture. Note, [14] reported 0.77 GFLOPS/W for a
GTX9800 GPU, which is one generation older than Fermi.
However, our BigSM configuration was able to show an
improvement of 26% and demonstrated 2.2 GFLOPS/W.
Note, that our power estimates include the off-chip memory
(DRAM) power as well. Clearly, further work is needed
before GPUs reach the efficiency of CGRAs. However, as
we demonstrated, by leveraging techniques from CGRAs,
we significantly boost the execution efficiency of GPUs.
Also, GPUs are more adept at handling memory-bound
applications than CGRAs.

When compared to previous work, [2] and [3] are similar
in spirit to our work but focus on CPUs and performance.
The TRIPS architecture [2] leveraged coarse-grain recon-
figuration to target three levels of parallelism: instruction,
data, and thread level, while, core fusion [3] demonstrated a
trade-off between instruction and thread level parallelism by
proposing the fusion and defusion of several cores to form
wider-issue cores. With respect to GPUs, [12] attempted to



improve energy efficiency of GPUs by grouping SMs into
clusters and sharing a front-end among them via local NoCs.
Our work distinguishes itself by providing a more closely
coupled architecture, without the overhead of an NoC and
without the need to scale the scheduler, issue and fetch
bandwidth. We also do not target runtime reconfiguration,
and do not require any custom ISA support. In addition, our
work derives energy savings by not only saving front-end
power, but also back-end power, by shutting down the back-
end (Occ. and Bal.), while still maintaining total throughput.
Additionally, in [7] the authors describe a configurable on-
chip memory that can be configured and redistributed as reg-
isters, shared memory and cache. In our work, we not only
look at memory, but also try to address thread occupancy and
SIMD execution. Finally, [16] performs a similar exploration
in resource sharing, but from a performance perspective.

VIII. CONCLUSION

In this work, we studied the inefficiencies that can arise in
GPU computing and demonstrated that kernels have diverse
characteristics and resource requirements. We proposed a
CGRA-inspired approach to share resources between the
SMs of a GPU, thereby enabling it to adapt to the needs
of the application and thus improve energy efficiency. By
configuring the SMs, on a kernel-by-kernel basis, the overall
energy efficiency of individual kernels, and therefore the
application, can be significantly improved. Our evaluation
showed that our most aggressive scheme, BigSM, is capable
of achieving up to 54% savings in energy, and averages 26%.

While our Occ. scheme proved be more power conserva-
tive, we believe the Bal. scheme still shows promise. We
hope further investigation will provide insight into how the
Bal. scheme may be leveraged for dynamic load balancing
and power management, by shutting down a few SMs for
short periods of time to meet the TDP (thermal design
power) requirements. With these results in mind, we believe
that adopting cross-core resource sharing on GPUs is an
exciting new opportunity and merits further study.
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