
High-Performance Video Content Recognition with Long-term
Recurrent Convolutional Network for FPGA

Xiaofan Zhang1, Xinheng Liu1, Anand Ramachandran1, Chuanhao Zhuge1, Shibin Tang2,
Peng Ouyang3, Zuofu Cheng4, Kyle Rupnow4, and Deming Chen1,4

1Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign
2Institute of Microelectronics, Tsinghua University

3School of Electronic and Information Engineering, Beihang University
4Inspirit IoT, Inc.

Abstract— FPGA is a promising candidate for the accelera-
tion of Deep Neural Networks (DNN) with improved latency
and energy consumption compared to CPU and GPU-based
implementations. DNNs use sequences of layers of regular
computation that are well suited for HLS-based design for
FPGA. However, optimizing large neural networks under re-
source constraints is still a key challenge. HLS must manage
on-chip computation, buffering resources, and off-chip memory
accesses to minimize the total latency. In this paper, we present
a design framework for DNNs that uses highly configurable
IPs for neural network layers together with a new design
space exploration engine for Resource Allocation Management
(REALM). We also carry out efficient memory subsystem design
and fixed-point weight re-training to further improve our FPGA
solution. We demonstrate our design framework on the Long-
term Recurrent Convolution Network for video inputs. Our
implementation on a Xilinx VC709 board achieves 3.1X speedup
compared to an NVIDIA K80 and 4.75X speedup compared to
an Intel Xeon with 17.5X lower energy per image.

I. INTRODUCTION

Recent years have seen rapid development of DNNs for
deployment on FPGAs [1-7]. DNNs are composed of layers
of regular computations such as convolution and pooling.
High level synthesis (HLS) is well suited to optimize the
regular computations of network layers. However, there
are significant challenges in managing computational com-
plexity, on-chip memory limitation, and external memory
bottlenecks. Each layer in a DNN features different computa-
tional and memory bandwidth demand; effective design of a
network demands both different optimization strategies based
on layer type as well as different optimization parameters
between different instances of the same layer. To produce
optimal network implementations under resource constraints,
we must determine best on-chip memory usage and exter-
nal memory access patterns, explore layer implementation
options and determine how to best allocate limited FPGA
resources among the layers in order to minimize overall
latency. In this paper, we develop the Resource Allocation
Management (REALM) framework to analyze resource re-
quirement and perform resource allocation among the layers
in order to minimize total network latency. We demonstrate
our framework using the Long-term Recurrent Convolutional
Network (LRCN) [8]. LRCN is among the most complex
tools available today aiming to achieve cognitive intelligence

Fig. 1: LRCN structure

in the context of video/image analysis. To summarize, the
main features of this paper are:

1) A flexible HLS IP for designing Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN)
optimally for a range of IP parameterizations. We use in-
stances of this IP to implement the LRCN.

2) A resource partitioning solution that provides guidelines
for resource allocation per layer for minimum overall latency.
We call this solution, REALM.

3) An implementation of LRCN on the Xilinx VC709
board. We demonstrate the effectiveness of REALM and our
HLS IP in the design process and achieve better performance
than GPU and CPU solutions.

The rest of this paper is organized as follows. In Section
2, the LRCN is briefly introduced, and existing FPGA-
based acceleration schemes for DNNs are discussed. In
Section 3, the main challenges encountered in mapping the
LRCN to the FPGA are presented. Section 4 describes our
REALM framework, the HLS IP, and additional techniques
for optimizing the design. The overall system implementation
and comparison study are presented in Section 5. In section
6, we conclude this paper.

II. BACKGROUND

A. LRCN

A typical LRCN is implemented using AlexNet [9] for
CNN and LSTM [10] for RNN. A LRCN uses 2.22 billion
floating point operations and 86.56M synapse weights for
processing just one video frame. Video frames are entered
sequentially into the system and first processed by CNN (the

left side in Figure 1) for the extraction of visual features
and the output is a vector with 1000 dimensions with each
dimension representing a category of objects. This vector
is passed to the RNN module (the right side in Figure 1)
to generate proper descriptions (RNN produces a separate
word in each iteration). By combining these different neural
networks together, LRCN becomes an end-to-end model for
video content description.

B. Related Work

FPGA-based acceleration has achieved very high perfor-
mance for DNNs. The work presented in [1] explores the
design space of loop optimizations in a CNN implementa-
tion. In [2], an efficient design is presented with a weight
quantization method. An OpenCL-based design method
and an associated design-space exploration for system-level
throughput optimization is carried out in [3] to produce a
CNN implementation. Memory access times are considered
in [4] to achieve comprehensive optimization goals. The
paper [5] exhaustively analyzes loop optimizations and data
movement patterns in CNN loops. An FPGA accelerator for
LSTM is designed in [6] which explores both computation
and communication optimizations. In [7], LSTM model com-
pression and an associated accelerator design are presented
and the results surpass CPU and GPU solutions. Compared
to these methods, we design a parameterized HLS IP for
implementing neural networks and we introduce a resource
allocation strategy called REALM, for achieving minimizing
overall latency.

III. DESIGN CHALLENGES

The memory space and computational complexity of
LRCN are very high. Table I summarizes the detailed re-
quirement with CNN (AlexNet) and 15 iterations of RNN
representing 15 output words. In total, 2.22 Giga (bil-
lion) floating-point operations are necessary during inference
while 411970 inputs are distributed to different layers and
659290 outputs are generated. 86.56 million weight data
are needed for video description which occupies 346.24MB
of memory. Layers in LRCN show different characteristics
regarding computation and memory requirements. The com-
putational demand of convolutional layers, fully-connected
layers and RNN are respectively 60.06%, 5.29% and 34.65%
while the memory space requirements are 2.69%, 67.73%
and 29.58% respectively. The complex structure and large

TABLE I: Space and Computation Complexity of LRCN

Layers # of
Weights(M)

of Input
data(K)

of Input
data(K)

of Output
data(K)

Conv1 0.03 0.21 150.53 290.40
Conv2 0.31 0.45 69.98 186.62
Conv3 0.89 0.30 43.26 64.90
Conv4 0.66 0.22 64.90 64.90
Conv5 0.44 0.15 64.90 43.26
FC1 37.76 0.08 9.22 4.10
FC2 16.79 0.03 4.10 4.10
FC3 4.10 0.01 4.10 1.00

RNN:
15 iterations 25.61 0.77 1.00 0.015

Total 86.56 2.22 411.99 659.29

Fig. 2: (a) The parameterizable HLS IP design and (b)
computation in blue, green, and orange blocks carried out
by a single IP

variation in the computation and communication character-
istics of different layers in LRCN present the following
challenges.

1) Resource allocation and partitioning. Currently, HLS
relies heavily on pragmas. Although using HLS pragmas
can improve the performance of loops of DNN layers, it is
not straightforward to relate such HLS pragmas directly to
the performance because of the possible data dependencies.
Second, LRCN consists of multiple loop structures across
different layers, a homogeneous resource allocation for these
layers will not produce the best results.

2) Memory limitation. The large size of the LRCN weight
data forces us to use external memory to store these weights.
The frequent access of external memory easily becomes a
bottleneck, which means that the performance of a critical
loop is not affected so much by its computation demand
and resource allocation, but by how frequently it needs
to access weights from the memory. While modeling the
performance, it is much simpler if this memory bottleneck
can be dealt with so as to reduce its impact on the system’s
performance. In this paper, we explore techniques in order
to improve memory performance, simplify the overall per-
formance model, and enable an effective resource allocation
scheme for minimizing overall latency.

IV. DESIGN METHODOLOGY

A. IP for LRCN Design

The IP-based design methodology provides the opportu-
nity to quickly implement a high-quality FPGA design with
customized IPs. In order to leverage its benefits, the proposed
HLS IP covers the most critical and universal operations
(multiply-accumulations) in DNNs. With this parameterized
IP, we can fit it into the LRCN implementation. In the
critical loops representing the LRCN layers, we moved the
loop iterations with minimal dependency inwards, so that the
inner loops in the transformed source code may be unrolled
for maximum parallelization and resource utilization. We
abstracted this loop structure as an HLS IP, and use it
to construct the network. As shown in Figure 2a, the IP
consists of Coo multiply-accumulate units of dimension Cii

each. It can represent a two-dimensional, unrolled, loop tile
of multiply-accumulate operations. The proposed IP source
code is shown in Algorithm 1. Figure 2b helps visualize how
a complete convolutional layer is built using the IP. One blue
block and sixteen green blocks are processed by the IP which

Fig. 3: REALM equations

generates partial sum of the orange block (one eighth of the
layer’s output). In Figure 2b, Cii=24 and Coo=16, and this
tile is reused 27×27×8×2 times to obtain all the outputs of
the layer.

B. Resource Allocation for Minimal Latency

Given that the computational demand of layer i is Ci

and the resource consumed by that layer is Ri, the latency
of the layer is proportional to Ci/Ri. Rtotal represents
resources to implement the complete network. Under these
conditions, the equations in Figure 3 hold (α is a constant
of proportionality). Equations (1) and (2) specify the latency
and resource calculations. Equations (3), (4) and (5) find a
lower-bound for the latency of the overall network. Equation
(6) lists the condition for the minimum latency. Equation
(6) is hence the essence of REALM (Resource Allocation
Management), which can be used to budget resources among
different layers in the network. Once we obtain the ratio of
resource allocation per layer from REALM, we can set the
tile-sizes of the HLS IP appropriately to reflect this ratio and
reach minimum latency.

Algorithm 1 Pseudocode of Proposed IP
1: for Ci → InChannel , Ci+ = Cii

2: for Co → OutChannel , Co+ = Coo

3: for i→ KernelHeight , i ++
4: for j → KernelWidth , j ++
5: #pragma HLS dataflow // Loading from Ping-pong buf.
6: Load Data Func();
7: for h→ OutHeight , h ++
8: for w → OutWidth , w ++
9: #pragma HLS pipeline // HLS IP starts below

10: for coo→ Coo , coo ++ // Output traversal
11: for SelBuf → 1, 2 // Sel. Ping-pong buf.
12: for cii→ Cii , cii ++ // Input traversal
13: Out[SelBuf][Co + coo][h][w]

+= weight[SelBuf][coo][cii]
×In[SelBuf][Ci + cii][h+ i][w + j]

Fig. 4: Memory-Bus Organization for Minimizing Wastage

C. Network Pruning and Quantization

One of the conditions that can invalidate the assumptions
behind REALM is that memory access time dominates the
layer latency instead of computations. This can happen
in the case of FC layers and LSTM which have a very
low computation-to-communication ratio. Second, FPGAs
perform favorably with fixed-point DSP units but not as well
when using floating point.

To address these concerns, we prune the original LRCN
network to reduce the number of output nodes in the fully-
connected layers, FC1 and FC2, from 4096 to 256. In
addition, two LSTM layers with 1000 hidden units each are
converted to one LSTM layer with 256 hidden units. We then
change the weights, bias and intermediate data to use fixed
point numbers (shown in Table II) to improve DSP utilization
and reduce the memory bandwidth pressure. We re-train
the modified LRCN network using Caffe for maintaining
accuracy. The accuracies of the networks are summarized in
Table III. After pruning and quantization, the LRCN network
occupies 11.08 million weight and requires 1.45G operations.
These updated numbers are used for setting up REALM.

D. Memory Management

In addition to network pruning and quantization, we take
further action to maintain the validity of the assumptions
under REALM by reducing the impact of communication
costs. Using a 12-bit format means that for a bus-width of
512 bits (this applies also to other bus-widths which are
usually power-of-2), a few bits in each access may have
to be discarded (512 is not divisible by 12). To prevent
this, we collect bits from three bus accesses for regrouping
into weights. The scheme is shown in Figure 4. To further
improve the memory access efficiency, we need to ensure that
the data access patterns exploit the maximum DDR memory

TABLE II: Layer-wise Bit-width Quantization

Layers Output data
(total bits, frac. bits)

Weight and Bias data
(total bits, frac. bits)

Conv1 16, 4 12, 11
Conv2 16, 7 12, 11
Conv3 16, 8 12, 11
Conv4 16, 9 12, 11
Conv5 16, 10 12, 11

FC1∼FC3 16, 11 12, 11
LSTM 16, 11 12, 11

TABLE III: Accuracy after Re-training
Network Accuracy

LRCN - original (AlexNet + 2 LSTM layers) 43.0%
LRCN pruned (AlexNet + 1 LSTM layer) 41.8%

LRCN pruned, fixed-point (AlexNet + 1 LSTM layer)
implemented on FPGA 42.0%

Fig. 5: Left: Front-end (Tegra TK1 and webcam); Right:
Back-end (Xilinx VC709 FPGA board, host PC)

bandwidth. We re-order the multi-dimensional weight data
into a linear sequence that follows the order of computation.
This ensures that data locality is exploited when the HLS IP
instance accesses weight data thus improve the throughput
of access. To further reduce the memory access latency,
we instantiate FIFOs outside the LRCN layers in the path
connecting the layers to external memory. In addition, we use
Vivado HLS to synthesize ping-pong buffers at the input of
each layer. This is intended to hide memory latency between
the layer’s computational unit and the FIFO feeding the layer.

V. IMPLEMENTATION AND COMPARISON

A. Overall System Setup

Xilinx Virtex-7 VC709 evaluation platform with
XC7VX690T FPGA is used for our design with
optimizations mentioned in Section 4, and Vivado HLS
2016.2 is used for high-level synthesis.

We build an end-to-end, real-time, video content de-
scription system that can directly process frames from a
commercial webcam. We use Tegra TK1 and a Logitech
C920 full-HD webcam as the front-end. We down-sample
the captured frames to the size that fits the LRCN network
and stream the image frame over the internet. On the back-
end side, the host PC receives the frames and pre-process
the image, including re-ordering of pixels and fixed-point
conversion, before off-loading the data to our LRCN kernel
implemented on the FPGA. After computation, the kernel
sends back an index vector which is used for dictionary look-
up to produce a sentence. The complete system is shown in
Figure 5.

B. Comparison

Resource consumption of proposed LRCN is shown in
Table IV, and the maximum frequency is 100MHz in our
board level implementation. We compared the performance
of the pruned LRCN model on CPU, GPU, and FPGA. The

TABLE IV: Resource Consumption
BRAM DSP Flip-flop LUT
1508 3130 321165 316250
51% 87% 37% 73%

TABLE V: LRCN Performance Comparison
Freq. Latency Speedup Power Efficiency

This work 100MHz 0.040s 4.75X 23.6W 0.94J/pic.
NVidia K80 562MHz 0.124s 1.53X 133W 16.49J/pic.
Intel Xeon
E5-2630 2.6GHz 0.19s 1.00X 88W 16.72J/pic.

floating-point version of the pruned LRCN was run on GPU
and CPU and the fixed-point version of the pruned LRCN
was run on the FPGA. In addition, two GPUs in the NVIDIA
K80 were used to map the LRCN network (using cuDNN)
under Caffe framework. The CPU version is an optimized
implementation (using BLAS) from the Caffe framework.

The performance and power comparisons are provided in
Table V. For the FPGA version, a power meter was used
to measure the consumption of the entire evaluation board
during the execution of the kernel. For the GPU version,
power was measured using the command nvidia-smi, and
for the CPU version, power was measured using a power
meter.

VI. CONCLUSIONS
In this paper, we presented an implementation of LRCN,

using an HLS-based design flow for FPGA. We introduced
a resource allocation strategy called REALM, which drove
theoretical guidelines for per-layer resource allocation for
minimum overall latency. We implemented methods includ-
ing network pruning, weight quantization, and retraining, as
well as efficient memory system design. Using our resource
allocation guidelines, we tuned the parameters of the pro-
posed HLS IP instances to implement the LRCN to obtain
a design whose power and latency performance surpassed
those of GPU and CPU implementations.

ACKNOWLEDGMENT
This work is partly supported by the IBM-Illinois Center

for Cognitive Computing Systems Research (C3SR) and IBM
Faculty Award.

REFERENCES

[1] Chen Zhang, et al. Optimizing FPGA-based accelerator design for
deep convolutional neural networks. Proc. of the Intl. Symposium on
Field-Programmable Gate Arrays. ACM, 2015.

[2] J. Qiu, et al. Going deeper with embedded FPGA platform for
convolutional neural network. Proc. of the Intl. Symposium on Field-
Programmable Gate Arrays. ACM, 2016.

[3] N. Suda, et al. Throughput-optimized OpenCL-based FPGA acceler-
ator for large-Scale convolutional neural networks. Proc. of the Intl.
Symposium on Field-Programmable Gate Arrays. ACM, 2016.

[4] M. Peemen, et al. Memory-centric accelerator design for convolutional
neural networks. Intl. Conference on Computer Design. IEEE, 2013.

[5] Y. Ma, Y. Cao, S. Vrudhula, J. Seo, Optimizing Loop Operation
and Dataflow in FPGA Acceleration of Deep Convolutional Neural
Networks. Proc. of the Intl. Symposium on Field-Programmable Gate
Arrays. ACM, 2017.

[6] Yijin Guan, et al. FPGA-based Accelerator for Long Short-Term
Memory Recurrent Neural Networks. The Asia and South Pacific
Design Automation Conference, IEEE, 2017.

[7] S. Han, et al. ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA. Proc. of the Intl. Symposium on Field-Programmable
Gate Arrays. ACM, 2017.

[8] J. Donahue, et.al. Long-term recurrent convolutional networks for vi-
sual recognition and description. Proc. of the conference on computer
vision and pattern recognition, IEEE, 2015.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification
with deep convolutional neural networks. Advances in Neural Infor-
mation Processing Systems, 2012.

[10] A. Graves and N. Jaitly, Towards End-To-End Speech Recognition
with Recurrent Neural Networks. Proc. of the Intl. Conference on
Machine Learning, 2014.

[11] E. Del Sozzo, et al. On the Automation of High Level Synthesis
of Convolutional Neural Networks. The Intl. Parallel and Distributed
Processing Symposium Workshops, IEEE, 2016.

